Height-Biased Leftist Trees

Linked binary tree.
Can do everything a heap can do and in the same asymptotic complexity.
Can meld two leftist tree priority queues in $\mathrm{O}(\log \mathrm{n})$ time.

Extended Binary Trees

Start with any binary tree and add an external node wherever there is an empty subtree.

Result is an extended binary tree.

A Binary Tree

An Extended Binary Tree

The Function s()

For any node x in an extended binary tree, let $\mathrm{s}(\mathrm{x})$ be the length of a shortest path from x to an external node in the subtree rooted at x .

s() Values Example

Properties Of s()

If x is an external node, then $\mathrm{s}(\mathrm{x})=0$.

Otherwise,
$s(x)=\min \{s(l$ leftChild(x)),
s(rightChild(x)) $\}+1$

Height Biased Leftist Trees

A binary tree is a (height biased) leftist tree iff for every internal node x,
s(leftChild(x)) >= s(rightChild(x))

Leftist Trees--Property 1

In a leftist tree, the rightmost path is a shortest root to external node path and the length of this path is s (root).

Leftist Trees—Property 2

The number of internal nodes is at least $2^{\text {s(root) }}-1$
Because levels 1 through s(root) have no external nodes.
So, $\mathrm{s}($ root $)<=\log (\mathrm{n}+1)$

Levels 1 and 2 have no external nodes.

Leftist Trees As Priority Queues

Min leftist tree ... leftist tree that is a min tree.
Used as a min priority queue.
Max leftist tree ... leftist tree that is a max tree.
Used as a max priority queue.

A Min Leftist Tree

Some Min Leftist Tree Operations

 empty()size()
top()
push()
pop()
meld()
initialize()
push() and pop() use meld().

Create a single node min leftist tree.

Push Operation

Create a single node min leftist tree.
Meld the two min leftist trees. (discussed later)

Remove Min (рор)
(2)

Remove Min (pop)

Remove the root.
Meld the two subtrees. (discussed later)

Meld Two Min Leftist Trees

Traverse only the rightmost paths so as to get logarithmic performance.

Meld Two Min Leftist Trees

Meld right subtree of tree with smaller root and all of other tree.

Meld Two Min Leftist Trees

Meld right subtree of tree with smaller root and all of other tree.

Meld Two Min Leftist Trees

Meld right subtree of tree with smaller root and all of other tree.

Right subtree of 6 is empty. So, result of melding right subtree of tree with smaller root and other tree is the other tree.

Meld Two Min Leftist Trees

Make melded subtree right subtree of smaller root.

Swap left and right subtree if s (left) $<s$ (right).

Meld Two Min Leftist Trees

Make melded subtree right subtree of smaller root.

Swap left and right subtree if s (left) $<\mathrm{s}$ (right).

Meld Two Min Leftist Trees

Make melded subtree right subtree of smaller root.

In Class Exercise

- Remove Min (pop) 3 and show the resulting Leftist tree.

Homework

- Sec. 9.2 Exercise 3 @P 500

