. Priority Queues

Two kinds of priority queues:
* Min priority queue.
* Max priority queue.

Min Priority Queue

 Collection of elements.
» Each element has a priority or key.

 Supports following operations:
= empty
= Size
= insert an element into the priority queue (push)
= get element with min priority (top)
= remove element with min priority (pop)

Max Priority Queue

 Collection of elements.
» Each element has a priority or key.

 Supports following operations:
= empty
= Size
= insert an element into the priority queue (push)
= get element with max priority (top)
= remove element with max priority (pop)

Complexity Of Operations

Use a heap or aleftist tree (both are defined
|ater).

empty, size, and top => O(1) time

insert (push) and remove (pop) => O(log n)
time where n is the size of the priority
gueue




Applications

Sorting
» use element key as priority
* insert elementsto be sorted into a priority queue
* remove/pop elementsin priority order
= if amin priority queueis used, elements are extracted
in ascending order of priority (or key)

= if amax priority queueis used, elements are extracted
in descending order of priority (or key)

Sorting Example

Sort five elements whose keys are 6, 8, 2, 4, 1
using amax priority queue.
= |nsert the five elementsinto a max priority queue.

= Do five remove max operations placing removed
elements into the sorted array from right to left.

After Inserting Into Max Priority Queue

Max Priority
Queue

Sorted Array

After First Remove Max Operation

Max Priority
Queue

Sorted Array




After Second Remove Max Operation

Max Priority
Queue

Sorted Array

After Third Remove Max Operation

Max Priority
Queue

Sorted Array

10

After Fourth Remove Max Operation

Sorted Array

Max Priority
Queue

11

After Fifth Remove Max Operation

Sorted Array

Max Priority
Queue

12




Complexity Of Sorting

Sort n elements.
= ninsert operations => O(n log n) time.
= N remove max operations => O(n log n) time.
= total timeis O(n log n).
= compare with O(n?) for insertion sort of
Lecture 1.

13

Min Tree Definition

Each tree node has a value.

Vauein any nodeisthe minimum valuein
the subtree for which that node is the root.

Equivalently, no descendent has a smaller
value.

14

Min Tree Example

« O
@%

Root has minimum e ement.

15

Max Tree Example

/\
PN @/@

Root has maximum & ement.

16




Min Heap Definition

e complete binary tree
* mintree

17

Min Heap With 9 Nodes

P

Complete binary tree with 9 nodes.

18

Min Heap With 9 Nodes
@
- _—
8 @ ®
©®)

Complete binary tree with 9 nodes
that isalso amin tree.

19

Max Heap With 9 Nodes

& O

Complete binary tree with 9 nodes
that is also amax tree.

20




Heap Height

Since aheap is acomplete binary
tree, the height of an n node heap is
log, (n+1).

21

A Heap Is Efficiently Represented As An Array

& @
W o(efr]elr]z]o6]s] 2 [MNMNNRNNNN

index 0 1 2 3 4 5 6 7 8 9 10

22

Moving Up And Down A Heap

23

Inserting An Element Into A Max Heap

& O

Complete binary tree with 10 nodes.

24




Inserting An Element Into A Max Heap

® © ®

New element is 5.
Needless to adjust the tree

25

Inserting An Element Into A Max Heap

/@

S d

New element is 20.

-
@

\e

26

Inserting An Element Into A Max Heap

(8)
oy,
& © @

New element is 20.

27

Inserting An Element Into A Max Heap

® © @

New element is 20.

28




Inserting An Element Into A Max Heap

® © @

New element is 20.

29

Inserting An Element Into A Max Heap

Complete binary tree with 11 nodes.

30

Inserting An Element Into A Max Heap

& O

New element is 15.

31

Inserting An Element Into A Max Heap

® @@ ®

New element is 15.

32




Inserting An Element Into A Max Heap

]
®©@ @@ ©

New element is 15.

Complexity Of Insert

/

(15)
(] /@
® ©0 ® @
Complexity is O(log n), wheren is
heap size.

In Class Exercise

 Insert 17 into the heap illustrated in last
dide.

* Provethat above insertion resultsin avalid
max heap.

35

Removing The Max Element

® @@ ®

Max element isin the root.

36




Removing The Max Element

(15)
(8) (9)

¢ 06 o

After max element is removed.

37

Removing The Max Element

®©® @@ ©®

Heap with 10 nodes.
Move 8 to the root of heap. -

Removing The Max Element

® 0@

Reinsert 8 into the heap.

39

Removing The Max Element

Y

Reinsert 8 into the heap.




Removing The Max Element

oy,
& © @

Reinsert 8 into the heap.

41

Removing The Max Element

Max element is 15.

42

Removing The Max Element

® 0@

After max element is removed.

Removing The Max Element

® ®©

Heap with 9 nodes.




Removing The Max Element

Reinsert 7.

45

Removing The Max Element

Removing The Max Element

(8)
& @

Reinsert 7.

47

& O

Complexity is O(log n).




In Class Exercise

« Remove the max element 9 from the heap
illustrated in last slide.

49

Initializing A Max Heap
@
Q

Start at rightmost array position that has a child.
Index isn/2.

50

Initializing A Max Heap
@
@ —
o ®

¢ 06 o

Move to next lower array position.

51

InitializingA Max Heap

52




Initializing A Max Heap Initializing A Max Heap

Initializing A Max Heap InitializingA Max Heap




Initializing A Max Heap

K

Find ahome for 2.

57

Initializing A Max Heap
@

909

Find a home for 2.

58

Initializing A Max Heap

@
T
® ®0@ ®©

Done, move to next lower array position.

59

InitializingA Max Heap

Find homefor 1.

60




Initializing A Max Heap

®
e@

¢ 06 o

Find home for 1.

Initializing A Max Heap
@)

<N

o)
® ® o 6

Find homefor 1.

Initializing A Max Heap

Find homefor 1.

Initializing A Max Heap




Homework
Implement a Program that Initialize a Max

Heap

* Nodel-2-3-4-5-6-7stored in
array
e tip: using recursion

oA ey

65




