
Binary Tree Traversal Methods
• Many binary tree operations are done by

performing a traversal of the binary tree.
• Possible Binary Tree Operations:

– Determine the height.
– Determine the number of nodes.
– Make a clone.
– Evaluate the arithmetic expression represented

by a binary tree.
– …

Binary Tree Traversal Methods

• In a traversal of a binary tree, each element of
the binary tree is visited exactly once.

• During the visit of an element, all action (make
a clone, display, evaluate the operator, etc.)
with respect to this element is taken.

Binary Tree Traversal Methods

• Preorder
• Inorder
• Postorder
• Level order

Preorder Traversal
template <class T>
void PreOrder(TreeNode<T> *t)
{

if (t != NULL)
{

Visit(t);
PreOrder(t->leftChild);
PreOrder(t->rightChild);

}
}

Preorder Example (Visit = print)
a

b c

a b c

Preorder Example (Visit = print)
a

b c

d e f

g h i j

a b d g h e i c f j

Preorder Of Expression Tree

+
a b

-
c d

+
e f

*

/

Gives prefix form of expression!

/ * + a b - c d + e f
• (a + b) * (c – d) / (e + f)

Merits Of Binary Tree Form
• Left and right operands are easy to visualize.
• Code optimization algorithms work with the

binary tree form of an expression.
• Simple recursive evaluation of expression.

+

a b
-

c d

+

e f

*

/

Inorder Traversal
template <class T>
void InOrder(TreeNode<T> *t)
{

if (t != NULL)
{

InOrder(t->leftChild);
Visit(t);
InOrder(t->rightChild);

}
}

Inorder Example (Visit = print)
a

b c

b a c

Inorder Example (Visit = print)
a

b c

d e f

g h i j

g d h b e i a f j c

Inorder By Projection (Squishing)
a

b c

d e f

g h i j

g d h b e i a f j c

Inorder Of Expression Tree

+
a b

-
c d

+
e f

*

/

Gives infix form of expression (without parentheses)!

ea + b * c d / + f-

Postorder Traversal
template <class T>
void PostOrder(TreeNode<T> *t)
{

if (t != NULL)
{

PostOrder(t->leftChild);
PostOrder(t->rightChild);
Visit(t);

}
}

Postorder Example (Visit = print)
a

b c

b c a

Postorder Example (Visit = print)
a

b c

d e f

g h i j

g h d i e b j f c a

Postorder Of Expression Tree

+
a b

-
c d

+
e f

*

/

Gives postfix form of expression!

a b + c d - * e f + /

Traversal Applications
a

b c

d e f

g h i j

• Make a clone.

• Determine height.

•Determine number of nodes.

Level Order

Let t be the tree root.
while (t != NULL)
{

visit t and put its children on a FIFO queue;
if FIFO queue is empty, set t = NULL;
otherwise, pop a node from the FIFO queue
and call it t;

}

Level-Order Example (Visit = print)
a

b c

d e f

g h i j

a b c d e f g h i j

Binary Tree Construction
• Suppose that the elements in a binary tree

are distinct.
• Can you construct the binary tree from

which a given traversal sequence came?
• When a traversal sequence has more than

one element, the binary tree is not uniquely
defined.

• Therefore, the tree from which the sequence
was obtained cannot be reconstructed
uniquely.

Some Examples
preorder

= ab
a

b

a

b

inorder
= ab

b

a

a

b

postorder
= ab

b

a

b

a

level order
= ab

a

b

a

b

Binary Tree Construction

• Can you construct the binary tree,
given two traversal sequences?

• Depends on which two sequences are
given.

Preorder And Postorder

preorder = ab a

b

a

bpostorder = ba

• Preorder and postorder do not uniquely define a
binary tree.

• Nor do preorder and level order (same example).

• Nor do postorder and level order (same example).

Inorder And Preorder
• inorder = g d h b e i a f j c
• preorder = a b d g h e i c f j
• Scan the preorder left to right using the

inorder to separate left and right subtrees.
• a is the root of the tree; gdhbei are in the left

subtree; fjc are in the right subtree.

a

gdhbei fjc

Inorder And Preorder

• preorder = a b d g h e i c f j
• b is the next root; gdh are in the left

subtree; ei are in the right subtree.

a

gdhbei fjc

a

gdh

fjcb

ei

Inorder And Preorder

• preorder = a b d g h e i c f j
• d is the next root; g is in the left

subtree; h is in the right subtree.

a

gdh

fjcb

ei

a

g

fjcb

eid

h

Inorder And Preorder

• preorder = a b d g h e i c f j
• e is the next root; nothing is in the left

subtree; i is in the right subtree.

a

gdh

fjcb

ei

a
fjcb

eid
hg

Inorder And Preorder

• preorder = a b d g h e i c f j
• c is the next root; fj is in the left

subtree; nothing is in the right subtree.

a

gdh

fjcb

ei

a
fjcb

d
hg

e
i

Inorder And Postorder

• Scan postorder from right to left using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• postorder = g h d i e b j f c a
• Tree root is a; gdhbei are in left subtree; fjc

are in right subtree.

In Class Exercise

• Determine the tree
– inorder = g d h b e i a f j c
– postorder = g h d i e b j f c a

Inorder And Level Order

• Scan level order from left to right using
inorder to separate left and right subtrees.

• inorder = g d h b e i a f j c
• level order = a b c d e f g h i j
• Tree root is a; gdhbei are in left subtree; fjc

are in right subtree.

Homework

• Sec. 5.3 Exercise 10 @P 267
– Remark: ADT 5.1 is defined @ P252

