Binary Tree Traversal Methods

- Many binary tree operations are done by performing a traversal of the binary tree.
- Possible Binary Tree Operations:
- Determine the height.
- Determine the number of nodes.
- Make a clone.
- Evaluate the arithmetic expression represented by a binary tree.
- ...
- In a traversal of a binary tree, each element of the binary tree is visited exactly once.
- During the visit of an element, all action (make a clone, display, evaluate the operator, etc.) with respect to this element is taken.

Binary Tree Traversal Methods

- Preorder
- Inorder
- Postorder
- Level order

Preorder Traversal

```
template <class T>
void PreOrder(TreeNode<T> *t)
{
    if (t != NULL)
    {
            Visit(t);
            PreOrder(t->leftChild);
            PreOrder(t->rightChild);
        }
}
```

Preorder Example (Visit = print)

abc

Preorder Example (Visit = print)

abdgheicf j

Preorder Of Expression Tree

- $(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
/ * $+\mathrm{ab}-\mathrm{cd}+\mathrm{ef}$
Gives prefix form of expression!

Merits Of Binary Tree Form

- Left and right operands are easy to visualize.
- Code optimization algorithms work with the binary tree form of an expression.
- Simple recursive evaluation of expression.

Inorder Traversal

```
template <class T>
void InOrder(TreeNode<T> *t)
{
    if (t != NULL)
    {
        InOrder(t->leftChild);
        Visit(t);
        InOrder(t->rightChild);
    }
}
```

Inorder Example (Visit = print)

gdhbei af j c

Inorder Example (Visit = print)

bac

Inorder By Projection (Squishing)

Inorder Of Expression Tree

Gives infix form of expression (without parentheses)!

Postorder Traversal

```
template <class T>
void PostOrder(TreeNode<T> *t)
{
    if (t != NULL)
    {
        PostOrder(t->leftChild);
        PostOrder(t->rightChild);
        Visit(t);
    }
}
```

Postorder Example (Visit = print)

b c a

Postorder Example (Visit = print)

ghdiebjfca

Postorder Of Expression Tree

$$
a b+c d-* e f+1
$$

Gives postfix form of expression!

Level Order

Let t be the tree root.
while (t != NULL)
\{
visit t and put its children on a FIFO queue; if FIFO queue is empty, set $\mathrm{t}=$ NULL; otherwise, pop a node from the FIFO queue and call it t;

Traversal Applications

- Make a clone.
- Determine height.
-Determine number of nodes.

Level-Order Example (Visit = print)

abcdefghij

Binary Tree Construction

- Suppose that the elements in a binary tree are distinct.
- Can you construct the binary tree from which a given traversal sequence came?
- When a traversal sequence has more than one element, the binary tree is not uniquely defined.
- Therefore, the tree from which the sequence was obtained cannot be reconstructed uniquely.

Some Examples

preorder
$=\mathrm{ab}$

inorder

$$
=\mathrm{ab}
$$

postorder

$$
=\mathrm{ab}
$$

level order
= ab

Binary Tree Construction

- Can you construct the binary tree, given two traversal sequences?
- Depends on which two sequences are given.

Preorder And Postorder

- Preorder and postorder do not uniquely define a binary tree.
- Nor do preorder and level order (same example).
- Nor do postorder and level order (same example).

Inorder And Preorder

- inorder $=$ g dhbeiaf c
- preorder $=$ abdgheicfj
- Scan the preorder left to right using the inorder to separate left and right subtrees.
- a is the root of the tree; gdhbei are in the left subtree; fjc are in the right subtree.

Inorder And Preorder

- preorder $=$ abdgheicf j
- b is the next root; gdh are in the left subtree; ei are in the right subtree.

Inorder And Preorder

- preorder $=$ abdgheicfj
- e is the next root; nothing is in the left subtree; i is in the right subtree.

Inorder And Preorder

- preorder $=$ abdgheicfj
- c is the next root; fj is in the left subtree; nothing is in the right subtree.

Inorder And Postorder

- Scan postorder from right to left using inorder to separate left and right subtrees.
- inorder $=$ g dhbe i a f jc
- postorder $=$ ghdiebjfca
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

In Class Exercise

- Determine the tree
- inorder = gdhbeiafjc
- postorder = ghdiebjfca

Inorder And Level Order

- Scan level order from left to right using inorder to separate left and right subtrees.
- inorder $=$ g dhbe i a f c
- level order = abcdefghij
- Tree root is a; gdhbei are in left subtree; fjc are in right subtree.

Homework

- Sec. 5.3 Exercise 10 @P 267
- Remark: ADT 5.1 is defined @ P252

