Binary Tree Properties \& Representation

Binary Tree

- Finite (possibly empty) collection of elements.
- A nonempty binary tree has a root element.
- The remaining elements (if any) are partitioned into two binary trees.
- These are called the left and right subtrees of the binary tree.

Differences Between A Tree \& A Binary Tree

- No node in a binary tree may have a degree more than 2 , whereas there is no limit on the degree of a node in a tree.
- The subtrees of a binary tree are ordered; those of a tree are not ordered.
left sub-tree

- Are different when viewed as binary trees.
- Are the same when viewed as trees.

Minimum Number Of Nodes

- Minimum number of nodes in a binary tree whose height is h .
- At least one node at each of first h levels.

Maximum Number Of Nodes

- All possible nodes at first h levels are present.

Maximum number of nodes

$$
=1+2+4+8+\ldots+2^{\mathrm{h}-1}
$$

$$
=2^{h}-1
$$

Full Binary Tree

- A full binary tree of a given height h has $2^{h}-1$ nodes.

Height 4 full binary tree.

Number Of Nodes \& Height

- Let n be the number of nodes in a binary tree whose height is h.
- $\mathrm{h}<=\mathrm{n}<=2^{\mathrm{h}}-1$
- $\log _{2}(\mathrm{n}+1)<=\mathrm{h}<=\mathrm{n}$

Numbering Nodes In A Full Binary Tree

- Number the nodes 1 through $2^{\mathrm{h}}-1$.
- Number by levels from top to bottom.
- Within a level number from left to right.

Node Number Properties

- Parent of node i is node $i / 2$, unless $i=1$.
- Node 1 is the root and has no parent.

Node Number Properties

- Left child of node i is node 2 i , unless $2 \mathrm{i}>\mathrm{n}$, where n is the number of nodes.
- If $2 \mathrm{i}>\mathrm{n}$, node i has no left child.

Node Number Properties

- Right child of node i is node $2 \mathrm{i}+1$, unless $2 \mathrm{i}+1$ $>\mathrm{n}$, where n is the number of nodes.
- If $2 \mathrm{i}+1>\mathrm{n}$, node i has no right child.

Complete Binary Tree With n Nodes

- Start with a full binary tree that has at least n nodes.
- Number the nodes as described earlier.
- The binary tree defined by the nodes numbered 1 through n is the unique n node complete binary tree.

- Complete binary tree with 10 nodes.

Binary Tree Representation

- Array representation.
- Linked representation.

Right-Skewed Binary Tree

- An n node binary tree needs an array whose length is between $\mathrm{n}+1$ and 2^{n}.

In Class Exercise
Array representation for the following tree

Linked Representation

- Each binary tree node is represented as an object whose data type is TreeNode.
- The space required by an n node binary tree is n * (space required by one node).

The Struct binaryTreeNode

```
template <class T>
```

template <class T>
class TreeNode
class TreeNode
{
{
T data;
T data;
TreeNode<T> *leftChild,
TreeNode<T> *leftChild,
*rightChild;
*rightChild;
TreeNode()
TreeNode()
{leftChild = rightChild = NULL; }
{leftChild = rightChild = NULL; }
// other constructors come here
// other constructors come here
};

```
};
```


Linked Representation Example

Homework

- Sec. 5.2 Exercise $3 @ P 258$

