Arithmetic Expressions

Evaluation of Expressions

Operator Degree

- Number of operands that the operator requires.
- Binary operator requires two operands.
$a+b$
c / d
$e-f$
- Unary operator requires one operand.

Infix Form

- Normal way to write an expression.
- Binary operators come in between their left and right operands.

```
a * b
a+b*c
a*b/c
(a+b)* (c+d) +e-f/g*h + 3.25
```


Operator Priorities

- How do you figure out the operands of an operator?

$$
\begin{aligned}
& a+b * c \\
& a * b+c / d
\end{aligned}
$$

- This is done by assigning operator priorities.

```
priority(*) = priority(/) > priority(+) = priority(-)
```

- When an operand lies between two operators, the operand associates with the operator that has higher priority.

Evaluation Expression in C++

- When evaluating operations of the same priorities, it follows the direction from left to right.
- C++ treats
- Nonzero as true
- zero as false
$-!3 \& \& 5+1 \rightarrow 0$

Priority	Operator	
1	Unary minus, !	
2	$*, /, \%$	
3	,+-	
4	$<,<=,>=,>$	
5	$==$ (equal), !=	
6	$\& \&$ (and)	
7	$\\|$ (or)	

In Class Exercise

Tie Breaker

- $x=6, y=5$
- $10+x^{*} 5 / y+1$
- $(x>=5) \& \& y<10$
-! $x>10+!y$
- When an operand lies between two operators that have the same priority, the operand associates with the operator on the left.

```
a + b - c
a*b/c/d
```


Delimiters

- Subexpression within delimiters is treated as a single operand, independent from the remainder of the expression.
$(a+b) *(c-d) /(e-f)$

Infix Expression Is Hard To Parse

- Need operator priorities, tie breaker, and delimiters.
- This makes computer evaluation more difficult than is necessary.
- Postfix and prefix expression forms do not rely on operator priorities, a tie breaker, or delimiters.
- So it is easier for a computer to evaluate expressions that are in these forms.

Postfix Form

- The postfix form of a variable or constant is the same as its infix form.
a, b, 3.25
- The relative order of operands is the same in infix and postfix forms.
- Operators come immediately after the postfix form of their operands.

Infix $=a+b$
Postfix $=a b+$

Postfix Examples

- $\operatorname{Infix}=a+b$ * c
abc*+
- $\operatorname{Infix}=\mathrm{a} * \mathrm{~b}+\mathrm{c}$
ab* c +
- Infix $=(a+b) *(c-d) /(e+f)$
ab+cd-*ef+/

Unary Operators

- Replace with new symbols.

$$
\begin{aligned}
& +\mathrm{a}=>\mathrm{a} @ \\
& +\mathrm{a}+\mathrm{b}=>\mathrm{a} @ \mathrm{~b}+ \\
& -\mathrm{a}=>\mathrm{a} ? \\
& \text { - a-b => a ? b - }
\end{aligned}
$$

Postfix Evaluation

Postfix Notation

Expressions are converted into Postfix notation before compiler can accept and process them.

$$
X=A / B-C+D * E-A * C
$$

Infix $\quad=\quad \mathrm{A} / \mathrm{B}-\mathrm{C}+\mathrm{D}^{*} \mathrm{E}-\mathrm{A}^{*} \mathrm{C} \quad$ (Operators come in-between operands)
Postfix => $\quad \mathrm{AB} / \mathrm{C}-\mathrm{DE} \mathrm{E}^{*}+\mathrm{AC} \mathrm{*}^{*} \quad$ (Operators come after operands)

Operation	Postfix
$T_{1}=A / B$	$T_{1} C-D E^{*}+A C^{*}-$
$T_{2}=T_{1}-C$	$T_{2} D E^{*}+A C^{*}-$
$T_{3}=D^{*} E$	$T_{2} T_{3}+A C^{*}-$
$T_{4}=T_{2}+T_{3}$	$T_{4} A C^{*}-$
$T_{5}=A^{*} C$	$T_{4} T_{5}-$
$T_{6}=T_{4}-T_{5}$	T_{6}

Postfix Evaluation

- $(a+b)$ * $(c-d) /(e+f)$
- $a b+c d-$ * $e f+/$
- $a b+c d-$ *ef+/
- $a b+c d-* e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+$ /

Postfix Evaluation

Postfix Evaluation

- $(a+b)^{*}(c-d) /(e+f)$
- $a b+c d-{ }^{*} e f+/$
- $a b+c d-* e f+/$
- ab+cd-*ef+/
- $a b+c d-* e f+/$

stack
- $(a+b)$ * $(c-d) /(e+f)$
- $a b+c d-$ * $e f+/$
- $\mathrm{ab}+\mathrm{cd}-* \mathrm{ef}+$ /

Postfix Evaluation

- $(a+b)^{*}(c-d) /(e+f)$
- $a b+c d-$ * $e f+/$
- $a b+c d-* e f+/$

Postfix Evaluation

- $(a+b)$ * $(c-d) /(e+f)$
- $a b+c d-$ * $e f+$
- $a b+c d-* e f+/$

$$
\begin{aligned}
& (\mathrm{e}+\mathrm{f}) \\
& (\mathrm{a}+\mathrm{b})^{*}(\mathrm{c}-\mathrm{d})
\end{aligned}
$$

Infix to Postfix

- The order of the operands in both form is the same.
- An algorithm for producing postfix from infix:

1. Fully parenthesize the expression.
2. Move all operators so that they replace their corresponding right parentheses.
3. Delete all parentheses.

Infix to Postfix

- For example: A/B-C+D*E-A*C

1. Fully parenthesize the expression. ((($\left.\left.(A / B)-C)+\left(D^{*} E\right)\right)-\left(A^{*} C\right)\right)$
2. Move all operators so that they replace their corresponding right parentheses. $\left(\left(((\mathrm{AB} /) \mathrm{C}-)\left(\mathrm{DE}^{*}\right)+\right)\left(\mathrm{AC}{ }^{*}\right)-\right)$
3. Delete all parentheses.
$A B / C-D E^{*}+A C^{*}-$

In Class Exercise

- Write the postfix form:

A\&\&B+C*D

Infix to Postfix

- We scan an expression for the first time, we can form the postfix by immediately passing any operands to the output.
- For example: $A+B^{*} C$ => ABC*+

Next token Stack Output None Empty None A Empty A + + A B + AB $*$ $+^{*}$ AB C $+^{*}$ ABC
Since * has higher priority, we should stack *.

Infix to Postfix

- Example: $A^{*}(B+C) / D$ => ABC+*D/
- When we get ')', we want to unstack down to the corresponding '(' and then delete the left and right parentheses.

Next token	Stack	Output
None	Empty	None
A	Empty	A
${ }^{*}$	${ }^{*}$	A
$($	${ }^{*}($	A
B	${ }^{*}($	AB
+	${ }^{*}(+$	AB
C	${ }^{*}(+$	ABC
$)$	${ }^{*}$	$\mathrm{ABC}+$
l	l	$\mathrm{ABC}+{ }^{*}$
D	l	$\mathrm{ABC}+{ }^{*} \mathrm{D}$
Done	Empty	$\mathrm{ABC}+{ }^{*} \mathrm{D} /$

Infix to Postfix

- Result rule of priorities:
- Operators are taken out of the stack as long as their isp is numerically less than or equal to the icp of the new operator.

Infix to Postfix

- These examples motivate a priority-based scheme for stacking and unstacking operators.
- When the left parenthesis '(' is not in the stack, it behaves as an operator with high priority.
- whereas once '(' gets in, it behaves as one with low priority (no operator other than the matching right parenthesis should cause it to get unstacked)
- Two priorities for operators: isp (in-stack priority) and icp (in-coming priority)
- The isp and icp of all operators in Figure 3.15 in p 160 remain unchanged.
- We assume that isp('(') $=8$ (the lowest), icp('(') $=0$ (the highest), and isp('\#') $=8$ (\# \rightarrow the last token)

Analysis of Postfix

- The function makes only a left-to-right pass across the input.
- The complexity of Postfix is $\Theta(\mathrm{n})$, where n is the number of tokens in the expression.
- The time spent on each operands is $\mathrm{O}(1)$.
- Each operator is stacked and unstacked at most once.
- Hence, the time spent on each operator is also $\mathrm{O}(1)$

Prefix Form

- The prefix form of a variable or constant is the same as its infix form.

$$
\text { a, b, } 3.25
$$

- The relative order of operands is the same in infix and prefix forms.
- Operators come immediately before the prefix form of their operands.

```
Infix = a + b
Postfix = ab+
Prefix = +ab
```


Prefix Examples

- $\operatorname{Infix}=\mathrm{a}+\mathrm{b}^{*} \mathrm{c}$
+a * b c
- $\operatorname{Infix}=\mathrm{a} * \mathrm{~b}+\mathrm{c}$
+* a b c
- Infix $=(\mathrm{a}+\mathrm{b}) *(\mathrm{c}-\mathrm{d}) /(\mathrm{e}+\mathrm{f})$
/* + a b - c d + e f

Prefix Notation

Expressions are converted into Prefix notation before compiler can accept and process them.

$$
X=A / B-C+D * E-A * C
$$

Infix => A/B-C+D*E-A*C (Operators come in-between operands) Prefix $=>\quad-+-/ A B C * D E * A C \quad$ (Operators come before operands)

Operation	Prefix
$T_{1}=A^{*} C$	$A / B-C+D^{*} E-T_{1}$
$T_{2}=D^{*} E$	$A / B-C+T_{2}-T_{1}$
$T_{3}=A / B$	$T_{3}-C+T_{2}-T_{1}$
$T_{4}=T_{3}-C$	$T_{4}+T_{2}-T_{1}$
$T_{5}=T_{4}+T_{2}$	$T_{5}-T_{1}$
$T_{6}=T_{5}-T_{1}$	T_{6}

Prefix Evaluation

- Scan prefix expression from right to left pushing operands on to a stack.
- When an operator is encountered, pop as many operands as this operator needs; evaluate the operator; push the result on to the stack.
- This works because, in prefix, operators come immediately before their operands.

Prefix Evaluation

Prefix Evaluation

- $(a+b)$ * $(c-d) /(e+f)$
- $/{ }^{*}+a b-c d+e f$
- /* $+a b-c d+e f$
- /* $+a b-c d+e f$
- /* $+a b-c d+e f$

- $(a+b)$ * $(c-d) /(e+f)$
- / * $+\mathrm{ab}-\mathrm{c} d+e \mathrm{f}$
- $/^{*}+a b-c d+e f$
- $\|^{*}+a b-c d+e f$
- /* $+a b-c d+e f$

Prefix Evaluation

Prefix Evaluation

- $(a+b)$ * $(c-d) /(e+f)$
- $(a+b)$ * $(c-d) /(e+f)$
- / * $+a b-c d+e f$
- $/^{*}+a b-c d+e f$
- /* + a b-cd+ef
$(a+b)$
$(c-d)$
$(e+f)$

Prefix Evaluation

- $(a+b)$ * $(c-d) /(e+f)$
- / * $+\mathrm{ab}-\mathrm{c} d+e \mathrm{f}$
- / * $+\mathrm{ab}-\mathrm{c} d+e \mathrm{f}$

Infix to Prefix

- The order of the operands in both form is the same.
- An algorithm for producing prefix from infix:

1. Fully parenthesize the expression.
2. Move all operators so that they replace their corresponding left parentheses.
3. Delete all parentheses.

Infix to Prefix

- For example: A/B-C+D*E-A*C

1. Fully parenthesize the expression. $\left(\left(((A / B)-C)+\left(D^{*} E\right)\right)-\left(A^{*} C\right)\right)$
2. Move all operators so that they replace their corresponding left parentheses.

$$
(-(+(-(I A B) C)(* D E))(* A C))
$$

3. Delete all parentheses.
-+-/ABC*DE*AC

In Class Exercise

- Write the prefix form:

Infix to Prefix

- We reverse an expression at first
- Create empty reversed prefix String by passing any operands to the output.
- we can form the prefix by immediately reverse again the reversed prefix String.
- For example: $A+B * C$ reverse: C * $B+A$
$=>+A^{*} B C$

Next token	Stack	Reverse S
None	Empty	None
C	Empty	C
$*$	$*$	C
B	${ }^{*}$	CB
+	+	CB^{*}
A	+	$\mathrm{CB}^{*} \mathrm{~A}$
Done	Empty	$\mathrm{CB}^{*}{ }^{\mathrm{A}+}$

Since * has higher priority, we should pop *, then push + .

Infix to Prefix

- Example: $\mathrm{A}^{*}(\mathrm{~B}+\mathrm{C})^{*} \mathrm{D}$ reverse: $\mathrm{D} *) \mathrm{C}+\mathrm{B}\left({ }^{*} \mathrm{~A}\right.$ => **A+BCD
- When we get '(', we want to unstack down to the corresponding ')' and then delete the left and right parentheses.

Next token	Stack	Reverse S
None	Empty	None
D	Empty	D
${ }^{*}$	${ }^{*}$	D
$)$	$\left.{ }^{*}\right)$	D
C	$\left.{ }^{*}\right)$	DC
+	$\left.{ }^{*}\right)^{+}$	DC
B	$\left.{ }^{*}\right)^{+}$	DCB
$($	${ }^{*}$	DCB+
${ }^{*}$	${ }^{* *}$	DCB+
A	${ }^{* *}$	DCB+A
Done	Empty	DCB+A**

don't pop *

Infix to Prefix

- These examples motivate a priority-based scheme for stacking and unstacking operators.
- When the right parenthesis ')' is not in the stack, it behaves as an operator with high priority.
- whereas once ')' gets in, it behaves as one with low priority (no operator other than the matching left parenthesis should cause it to get unstacked)
- Two priorities for operators: isp (in-stack priority) and icp (in-coming priority)
- The isp and icp of all operators in Figure 3.15 in p 160 remain unchanged.
- We assume that $\left.\operatorname{isp}\left({ }^{\prime}\right)^{\prime}\right)=8$ (the lowest), $\left.\operatorname{icp}\left({ }^{\prime}\right)^{\prime}\right)=0$ (the highest), and isp('\#') $=8$ (\# \rightarrow the last token)

Infix to Prefix

- Result rule of priorities:
- Operators are taken out of the stack as long as their isp is numerically less than the icp of the new operator.
- Not the same as Infix to Postfix

Analysis of Prefix

- The function makes only a left-to-right pass across the input (reversed prefix String).
- The complexity of Postfix is $\Theta(n)$, where n is the number of tokens in the expression.
- The time spent on each operands is $\mathrm{O}(1)$.
- Each operator is stacked and unstacked at most once.
- Hence, the time spent on each operator is also O(1)

Homework

- Sec. 3.7 Exercise 3 (Page 166)
- Convert infix expressions to prefix expressions

