
Evaluation of Expressions

Arithmetic ExpressionsArithmetic Expressions

• (a + b) * (c + d) + e – f/g*h + 3.25
• Expressions comprise three kinds of entities.

– Operators (+ - / *)– Operators (+, -, /,).
– Operands (a, b, c, d, e, f, g, h, 3.25, (a + b), (c +

d) etc)d), etc.).
– Delimiters ((,)).

Operator DegreeOperator Degree

• Number of operands that the operator
irequires.

• Binary operator requires two operands.y p q p
– a + b
– c / dc / d
– e - f

• Unary operator requires one operand• Unary operator requires one operand.
– + g

h– - h

Infix FormInfix Form

• Normal way to write an expression.
• Binary operators come in between their left

and right operandsand right operands.
– a * b

b *– a + b * c
– a * b / c
– (a + b) * (c + d) + e – f/g*h + 3.25

Operator PrioritiesOperator Priorities

• How do you figure out the operands of an
t ?operator?

– a + b * c
– a * b + c / d

• This is done by assigning operatorThis is done by assigning operator
priorities.
– priority(*) = priority(/) > priority(+) = priority(-)priority() priority(/) > priority(+) priority()

• When an operand lies between two
operators the operand associates with theoperators, the operand associates with the
operator that has higher priority.

Evaluation Expression in C++Evaluation Expression in C

• When evaluating
operations of the

Priority Operator
1 Unary minus, !operations of the

same priorities, it
follows the direction

y
2 *, /, %
3 +follows the direction

from left to right.
C++ treats

3 +, -
4 <, <=, >=, >

• C++ treats
– Nonzero as true

f l

5 == (equal), !=
6 && (and)

– zero as false
– !3&&5 +1 0

&& (a d)
7 || (or)

In Class ExerciseIn Class Exercise

• x=6, y=5
• 10+x*5/y+110+x 5/y+1
• (x>=5)&&y<10
• !x>10+!y

Tie BreakerTie Breaker

• When an operand lies between two
operators that have the same priority, the
operand associates with the operator on p p
the left.

a + b c– a + b - c
– a * b / c / d

Delimiterse te s

• Subexpression within delimiters is
treated as a single operand,
independent from the remainder of the p
expression.

(a + b) * (c d) / (e f)– (a + b) (c – d) / (e – f)

Infix Expression Is Hard To ParseInfix Expression Is Hard To Parse

• Need operator priorities, tie breaker,
d d li itand delimiters.

• This makes computer evaluation more p
difficult than is necessary.

• Postfix and prefix expression forms doPostfix and prefix expression forms do
not rely on operator priorities, a tie
breaker or delimitersbreaker, or delimiters.

• So it is easier for a computer to
evaluate expressions that are in theseevaluate expressions that are in these
forms.

Postfix FormPostfix Form

• The postfix form of a variable or• The postfix form of a variable or
constant is the same as its infix form.
– a, b, 3.25

• The relative order of operands is theThe relative order of operands is the
same in infix and postfix forms.
O t i di t l ft th• Operators come immediately after the
postfix form of their operands.
– Infix = a + b
– Postfix = ab+Postfix ab+

Postfix ExamplesPostfix Examples
• Infix = a + b * ca b c

– Postfix = a b c * +

• Infix = a * b + c
Postfix = a b * c +

• Infix = (a + b) * (c – d) / (e + f)
Postfix = a b + c d - * e f + /

Unary OperatorsUnary Operators

• Replace with new symbols.
– + a => a @
– + a + b => a @ b + a b a @ b
– - a => a ?

b > ? b– - a-b => a ? b -

Postfix NotationPostfix Notation
Expressions are converted into Postfix notation before

compiler can accept and process themcompiler can accept and process them.
X = A / B – C + D * E – A * C

Infix => A / B – C + D * E – A * C
Postfix => A B / C – D E * + A C * -

(Operators come in-between operands)

(Operators come after operands)

Operation Postfix
T1 = A / B T1 C – D E * + A C * -
T2 = T1 - C T2 D E * + A C * -
T3 = D * E T2 T3 + A C * -
T4 = T2 + T3 T4 A C * -
T5 = A * C T4 T5 -
T6 = T4 - T5 T6

Postfix EvaluationPostfix Evaluation

• Scan postfix expression from left to right
hi d t t kpushing operands on to a stack.

• When an operator is encountered, pop p p p
as many operands as this operator
needs; evaluate the operator; push the p p
result on to the stack.

• This works because in postfixThis works because, in postfix,
operators come immediately after their
operandsoperands.

Postfix EvaluationPostfix Evaluation

• (a + b) * (c – d) / (e + f)
• a b + c d - * e f + /
• a b + c d * e f + /• a b + c d - e f + /
• a b + c d - * e f + /

b
• a b + c d - * e f + /

a
b

stack

Postfix EvaluationPostfix Evaluation

• (a + b) * (c – d) / (e + f)
• a b + c d - * e f + /a b + c d e f + /
• a b + c d - * e f + /

• a b + c d - * e f + /
• a b + c d - * e f + /

b d * f / c
d

(a + b)
• a b + c d - * e f + / c

• a b + c d - * e f + /
stack• a b + c d - * e f + /

Postfix EvaluationPostfix Evaluation

• (a + b) * (c – d) / (e + f)
• a b + c d - * e f + /a b + c d e f + /

• a b + c d * e f + /• a b + c d - * e f + /

(c – d)
(a + b)
(c d)

stack

Postfix EvaluationPostfix Evaluation

• (a + b) * (c – d) / (e + f)
• a b + c d - * e f + /a b + c d e f + /

• a b + c d * e f + /• a b + c d - * e f + /
• a b + c d - * e f + /

e
• a b + c d - * e f + / f
• a b + c d - * e f + /

(a + b)*(c – d)
e• a b + c d - e f + /

stack

Postfix EvaluationPostfix Evaluation

• (a + b) * (c – d) / (e + f)
• a b + c d - * e f + /a b + c d e f + /

• a b + c d * e f + /• a b + c d - * e f + /
• a b + c d - * e f + /

(e + f)
• a b + c d - * e f + /
• a b + c d - * e f + /

(a + b)*(c – d)
(e f)• a b + c d - e f + /

• a b + c d - * e f + /

stack

Infix to PostfixInfix to Postfix

• The order of the operands in both form is
the same.

• An algorithm for producing postfix from
infix:infix:
1. Fully parenthesize the expression.
2. Move all operators so that they replace their

corresponding right parentheses.
3. Delete all parentheses.

Infix to PostfixInfix to Postfix

• For example: A/B-C+D*E-A*C
1. Fully parenthesize the expression.y p p

((((A/B)-C)+(D*E))-(A*C))
2 Move all operators so that they replace their2. Move all operators so that they replace their

corresponding right parentheses.
((((AB/)C-)(DE*)+)(AC*)-)((((AB/)C)(DE)+)(AC))

3. Delete all parentheses.
AB/C DE*+AC*AB/C-DE*+AC*-

In Class ExerciseIn Class Exercise

• Write the postfix form:
A&&B+C*D

Infix to PostfixInfix to Postfix
N t t k St k O t t• We scan an

expression for the first
Next token Stack Output

None Empty None
A Empty Atime, we can form the

postfix by immediately

A Empty A
+ + A
B + AB

passing any operands
to the output.

* +* AB
C +* ABC

• For example: A+B*C
=> ABC*+ Since * has higher priority, we should

stack *stack .

Infix to PostfixInfix to Postfix
N t t k St k O t t• Example: A*(B+C)/D

=> ABC+*D/
Next token Stack Output

None Empty None
A Empty A

• When we get ‘)’, we

A Empty A
* * A
(*(AWhen we get) , we

want to unstack down
to the corresponding

B *(AB
+ *(+ ABto the corresponding

‘(’ and then delete the
left and right

C *(+ ABC
) * ABC+
/ / ABC+*left and right

parentheses.
/ / ABC+
D / ABC+*D

Done Empty ABC+*D/

Infix to PostfixInfix to Postfix
Th l i i i b d h f ki d• These examples motivate a priority-based scheme for stacking and
unstacking operators.

• When the left parenthesis ‘(‘ is not in the stack, it behaves as an p (,
operator with high priority.

• whereas once ‘(‘ gets in, it behaves as one with low priority (no
operator other than the matching right parenthesis should cause it tooperator other than the matching right parenthesis should cause it to
get unstacked)

• Two priorities for operators: isp (in-stack priority) and icp (in-coming
priority)

• The isp and icp of all operators in Figure 3.15 in p 160 remain
unchangedunchanged.

• We assume that isp(‘(‘) = 8 (the lowest), icp(‘(‘) = 0 (the highest),
and isp(‘#’) = 8 (# the last token)

Infix to PostfixInfix to Postfix

• Result rule of priorities:
– Operators are taken out of the stack as long p g

as their isp is numerically less than or equal to
the icp of the new operator.p p

Analysis of PostfixAnalysis of Postfix

• The function makes only a left-to-right
pass across the input.p p

• The complexity of Postfix is Θ(n), where n
is the number of tokens in the expressionis the number of tokens in the expression.
– The time spent on each operands is O(1).
– Each operator is stacked and unstacked at

most once.
– Hence, the time spent on each operator is

also O(1)also O(1)

Prefix FormPrefix Form
• The prefix form of a variable or constant• The prefix form of a variable or constant

is the same as its infix form.
a b 3 25– a, b, 3.25

• The relative order of operands is the
f f fsame in infix and prefix forms.

• Operators come immediately before the p y
prefix form of their operands.
– Infix = a + bInfix a b
– Postfix = ab+

Prefix = +ab– Prefix = +ab

Prefix ExamplesPrefix Examples
• Infix = a + b * ca b c

– Postfix = + a * b c

• Infix = a * b + c
Postfix = + * a b c

• Infix = (a + b) * (c – d) / (e + f)
Postfix = / * + a b - c d + e f

Prefix NotationPrefix Notation
Expressions are converted into Prefix notation before

compiler can accept and process themcompiler can accept and process them.
X = A / B – C + D * E – A * C

Infix => A / B – C + D * E – A * C
Prefix => - + - / A B C * D E * A C

(Operators come in-between operands)

(Operators come before operands)

Operation Prefix
T1 = A * C A / B – C + D * E – T1

T2 = D * E A / B – C + T2 – T1

T3 = A / B T3 – C + T2 – T1

T4 = T3– C T4 + T2 – T1

T5 = T4 + T2 T5 – T1

T6 = T5 – T1 T6

Prefix EvaluationPrefix Evaluation

• Scan prefix expression from right to left
hi d t t kpushing operands on to a stack.

• When an operator is encountered, pop p p p
as many operands as this operator
needs; evaluate the operator; push the p p
result on to the stack.

• This works because in prefix operatorsThis works because, in prefix, operators
come immediately before their
operandsoperands.

Prefix EvaluationPrefix Evaluation

• (a + b) * (c – d) / (e + f)
• / * + a b - c d + e f

• / * + a b - c d + e f
• / * + a b - c d + e f

/ * + a b c d + e f e• / * + a b - c d + e f
f
e

stack

Prefix EvaluationPrefix Evaluation

• (a + b) * (c – d) / (e + f)
• / * + a b - c d + e f

• / * + a b - c d + e f
• / * + a b - c d + e f

/ * + a b c d + e f d
c

• / * + a b - c d + e f
(e + f)

d

stack

Prefix EvaluationPrefix Evaluation

• (a + b) * (c – d) / (e + f)
• / * + a b - c d + e f

• / * + a b - c d + e f a

• / * + a b - c d + e f
/ * + a b c d + e f

b
(c – d)• / * + a b - c d + e f
(e + f)
(c d)

stack

Prefix EvaluationPrefix Evaluation

• (a + b) * (c – d) / (e + f)
• / * + a b - c d + e f

• / * + a b - c d + e f

(c – d)
(a + b)

(e + f)
(c d)

stack

Prefix EvaluationPrefix Evaluation

• (a + b) * (c – d) / (e + f)
• / * + a b - c d + e f

• / * + a b - c d + e f

(a + b) * (c – d)
(e + f)

(a b) (c d)

stack

Infix to PrefixInfix to Prefix

• The order of the operands in both form is
the same.

• An algorithm for producing prefix from infix:
1 F ll th i th i1. Fully parenthesize the expression.
2. Move all operators so that they replace their

corresponding left parentheses.
3. Delete all parentheses.p

Infix to PrefixInfix to Prefix

• For example: A/B-C+D*E-A*C
1. Fully parenthesize the expression.y p p

((((A/B)-C)+(D*E))-(A*C))
2 Move all operators so that they replace their2. Move all operators so that they replace their

corresponding left parentheses.
(-(+(-(/AB)C)(*DE))(*AC))((+((/AB)C)(DE))(AC))

3. Delete all parentheses.
+ /ABC*DE*AC-+-/ABC*DE*AC

In Class ExerciseIn Class Exercise

• Write the prefix form:
A&&B+C*D

Infix to PrefixInfix to Prefix
N t t k St k R S• We reverse an

expression at first
C t t d

Next token Stack Reverse S
None Empty None

C Empty C• Create empty reversed
prefix String by passing
any operands to the

C Empty C
* * C
B * CBany operands to the

output.
• we can form the prefix by

+ + CB*
A + CB*Ae ca o e p e by

immediately reverse
again the reversed prefix

Done Empty CB*A+

String.
• For example: A+B*C

Since * has higher priority, we should
pop *, then push + .

reverse: C * B+A
=> +A*BC

Infix to PrefixInfix to Prefix
N t t k St k R S• Example: A*(B+C)*D

reverse: D *)C+B(*A

Next token Stack Reverse S
None Empty None

D Empty D) (
=> **A+BCD

D Empty D
* * D
) *) D

• When we get ‘(’, we
want to unstack down

C *) DC
+ *)+ DC

want to unstack down
to the corresponding
‘)’ and then delete the

B *)+ DCB
(* DCB+
* ** DCB+‘)’ and then delete the

left and right
parentheses

DCB+
A ** DCB+A

Done Empty DCB+A**parentheses.
don’t pop *

Infix to PrefixInfix to Prefix
Th l i i i b d h f ki d• These examples motivate a priority-based scheme for stacking and
unstacking operators.

• When the right parenthesis ‘)‘ is not in the stack, it behaves as an g p) ,
operator with high priority.

• whereas once ‘)‘ gets in, it behaves as one with low priority (no
operator other than the matching left parenthesis should cause it tooperator other than the matching left parenthesis should cause it to
get unstacked)

• Two priorities for operators: isp (in-stack priority) and icp (in-coming
priority)

• The isp and icp of all operators in Figure 3.15 in p 160 remain
unchangedunchanged.

• We assume that isp(‘)‘) = 8 (the lowest), icp(‘)‘) = 0 (the highest),
and isp(‘#’) = 8 (# the last token)

Infix to PrefixInfix to Prefix

• Result rule of priorities:
– Operators are taken out of the stack as long p g

as their isp is numerically less than the icp of
the new operator.p

– Not the same as Infix to Postfix

Analysis of PrefixAnalysis of Prefix

• The function makes only a left-to-right
pass across the input (reversed prefix p p (p
String).

• The complexity of Postfix is Θ(n) where n• The complexity of Postfix is Θ(n), where n
is the number of tokens in the expression.
– The time spent on each operands is O(1).
– Each operator is stacked and unstacked at p

most once.
– Hence the time spent on each operator isHence, the time spent on each operator is

also O(1)

HomeworkHomework

• Sec. 3.7 Exercise 3 (Page 166)
– Convert infix expressions to prefix p p

expressions

