Q Queues g

Linear list.

Oneendiscalled front.

Other end iscalled rear.

Additions are done at the rear only.
Removals are made from the front only.
FIFO (First In First Out)

Bus Stop Queue

Bus Stop Queue

’T‘ Reew

front

Bus Stop Queue

T ¢ : &

front

Bus Stop Queue

Revisit Of Stack Applications

» Applications in which the stack cannot be
replaced with a queue.
= Parentheses matching.
= Towers of Hanoi.
= Method invocation and return.
 Application in which the stack may be
replaced with a queue.

= Rat in amaze.
Resultsin finding shortest path to exit.

Wire Routing

Represent as a grid in which components and already
placed wires are denoted by blocked grid positions.
(Can be used to solve the rat in the maze.)

Lee' s Wire Router

O startpin

[] endpin

Label all reachable squares 1 unit from start.

Lee’s Wire Router

[startpin

[] endpin

Store th/

position in
the queue.

Label all reachable unlabeled squares 2 units
from start.

Lee' s Wire Router

[start pin
d pi 212
[] endpin 1 HE
2 2

Label al reachable unlabeled squares 3 units
from start.

Lee’s Wire Router

[startpin
[] endpin

WINFN|W
WINFIN|W
N

L abel all reachable unlabeled squares 4 units
from start.

Lee' s Wire Router

[start pin

[] endpin

D
BIWIN|ERIN W
B N

BIWIN|FR N[

Label all reachable unlabeled squares 5 units
from start.

Lee’s Wire Router Lee’s Wire Router
5 6|56
[startpin 4[5 O startpin 45
[] endpin mEE [] endpin 1 HE
22 22 6
3(4[3]4[5 3[4[3[4[5]6
4l 4|5 4l 4[5]6
5| |5 5|6]5]|6
6
L abel all reachable unlabeled squares 6 units End pin reached. Traceback.
from start.
Lee’s Wire Router Queue Operations
6]5]6
[startpin 4|5
n ol
[] endpin W
% 4 % 4 g 5 = |SEmpty ... return true iff queue is empty
f—,' . g g 6 = Front ... return front element of queue
6 = Rear ... return rear element of queue
= Push ... add an element at the rear of the queue
= Pop ... delete the front element of the queue
End pin reached. Traceback.

Queuein an Array

= Usea 1D array to represent a queue.
= Suppose queue elements are stored with the front

element in queug[0], the next in queug[1], and so on.

Derive From arrayList

albjc|d|e

01 2 3456

= Pop() => delete queue[Q], shift other elements one
step left
— O(queue size) time
= Push(x) => if thereis capacity, add at right end
—0O(1) time

O(1) Pop and Push

= to perform each opertion in O(1) time (excluding
array doubling), we use a circular representation.

Custom Array Queue

* UsealD array queue.
queve]] ETEIEIEIEE

 Circular view of array.
[2] [3]

[1] [4]

[] [5]

Custom Array Queue

 Possible configuration with 3 elements.

Custom Array Queue

» Another possible configuration with 3
elements.

Custom Array Queue

o Useinteger variables front and rear.

— front is one position counterclockwise from
first element

— rear gives position of last element

Push An Element

* Move rear one clockwise.

Push An Element

* Move rear one clockwise.
» Then put into queue|rear].

[4]

Pop An Element

* Move front one clockwise.

Pop An Element

* Move front one clockwise.
» Then extract from queue|front].

front: [2] [3]

rear

[1]

Moving rear Clockwise

o reart++:
if (rear = = capacity) rear = 0;

e rear = (rear + 1) % capacity;

Empty That Queue

front

[4]

Empty That Queue

[4]

front

Empty That Queue

[4]

Empty That Queue

[4]

» When a series of removes causes the queue to
become empty, front = rear.

» When aqueueis constructed, it is empty.
o Soinitializefront = rear = 0.

A Full Tank Please

A Full Tank Please

A Full Tank Please

Col e
%0‘
(0]]

rear

front

[4]

A Full Tank Please

front

[1] [4]

rear

* When a series of adds causes the queue to

become full, front = rear.

» S0 we cannot distinguish between afull

gueue and an empty queue!

 Remedies.

= Don't let the queue get full.

When the addition of an element will cause the queue to be
full, increase array size.

Thisiswhat the text does.

= Define a boolean variable | astOperationl sPush.
Following each push set this variable to true.
Following each pop set to false.
Queue isempty iff (front == rear) & & !lastOperationlsPush
Queueisfull iff (front == rear) & & lastOperationlsPush

» Remedies (continued).

= Define an integer variable size.
Following each push do sizet++.
Following each pop do size--.
Queueisempty iff (size==0)
Queue isfull iff (size == arrayLength)
= Performanceis slightly better when first strategy is
used.

Doubling Queue Capacity

rear
front
[4] Before enlarge array

0 1 2 3 4 5
B C D E A

After enlarge array

112 3|4 |51|6 |7 8|9 |10/11
B |C|DE A

0l11/21/3]4 |5 |6 |7 |81 1012

Homework

e Sec. 3.5 Exercisel (a) P157

= Trace the program. (Find a path through the
maze with Lee’s Wire Router algorithm
introduced in this section)

