
QueuesQueues

• Linear list.
• One end is called front.
• Other end is called rear• Other end is called rear.
• Additions are done at the rear only.
• Removals are made from the front only.

FIFO (Fi t I Fi t O t)• FIFO (First In First Out)

Bus Stop Queuep Q

Bus
SStop

front rear rear rear rear
rear

Bus Stop Queuep Q

Bus
SStop

front rear rear
rear

Bus Stop Queuep Q

Bus
SStop

front rear
rear

Bus Stop Queuep Q

Bus
SStop

front rear
rear

Revisit Of Stack Applications
• Applications in which the stack cannot be

replaced with a queuereplaced with a queue.
Parentheses matching.
Towers of Hanoi.
Method invocation and return.

• Application in which the stack may be
replaced with a queuereplaced with a queue.

Rat in a maze.
• Results in finding shortest path to exit.

Wire RoutingWire Routing

Represent as a grid in which components and already
placed wires are denoted by blocked grid positions.p y g p
(Can be used to solve the rat in the maze.)

Lee’s Wire Router
start pin

end pin

Label all reachable squares 1 unit from start.

Lee’s Wire Router
start pin

end pin
11

Store the
position in
the queue.

Label all reachable unlabeled squares 2 units q
from start.

Lee’s Wire Router
start pin

end pin
11
22

2
22

Label all reachable unlabeled squares 3 units abe a eac ab e u abe ed squa es 3 u ts
from start.

Lee’s Wire Router
start pin

33
end pin

11
22

2

33

22
33

L b l ll h bl l b l d 4 itLabel all reachable unlabeled squares 4 units
from start.

Lee’s Wire Router
start pin

33
4

end pin
11
22

2

33

22
33

4
4

4
4

L b l ll h bl l b l d 5 itLabel all reachable unlabeled squares 5 units
from start.

Lee’s Wire Router
start pin

33
4
5

5

end pin
11
22

2

33

22
33

4
4

4
4
5

5

5 5

L b l ll h bl l b l d 6 itLabel all reachable unlabeled squares 6 units
from start.

Lee’s Wire Router
start pin

33
4
5

5
66

end pin
11
22

2

33

22
33

4
4

4
4
5

5
6

6
6

5 5 66
6

End pin reached. Traceback.

Lee’s Wire Router
start pin

33
4
5

5
66

end pin
11
22

2

33

1

4
22
33

4
4

4
4
5

5
6

6
6

3 5
2

5 5 66
6

End pin reached. Traceback.

Queue Operations

IsEmpty … return true iff queue is empty
Front … return front element of queueFront … return front element of queue
Rear … return rear element of queue
P h dd l t t th f thPush … add an element at the rear of the queue
Pop … delete the front element of the queue

Queue in an Array

Use a 1D array to represent a queue.
Suppose queue elements are stored with the front pp q
element in queue[0], the next in queue[1], and so on.

Derive From arrayList

0 1 2 3 4 5 6

a b c d e

0 1 2 3 4 5 6

Pop() => delete queue[0], shift other elements one
step left

– O(queue size) time

Push(x) => if there is capacity, add at right end
– O(1) time

O(1) Pop and PushO(1) Pop and Push

f h i i O(1) i (l dito perform each opertion in O(1) time (excluding
array doubling), we use a circular representation.

Custom Array QueueCustom Array Queue

• Use a 1D array queue.
queue[]

• Circular view of array.
[2] [3][2] [3]

[1] [4]

[0] [5]

Custom Array QueueCustom Array Queue
• Possible configuration with 3 elements.Possible configuration with 3 elements.

[2] [3]
A B

[1] [4]

A B

C

[0]

[] []

[5][0] [5]

Custom Array QueueCustom Array Queue
• Another possible configuration with 3Another possible configuration with 3

elements.

[2] [3]

[1] [4]C

[0]

[] []

[5]
AB

[0] [5]

Custom Array QueueCustom Array Queue
• Use integer variables front and rear.Use integer variables front and rear.

– front is one position counterclockwise from
first elementfirst element

– rear gives position of last element

[2] [3] [2] [3][2] [3]
A B

front rear

[2] [3]

front
rear

[1] [4]C
o

[1] [4]C
front

[0] [5] [0] [5]
AB

Push An ElementPush An Element
• Move rear one clockwise.Move rear one clockwise.

[2] [3][2] [3]
A B

front rear

[1] [4]C
front

[0] [5]

Push An ElementPush An Element
• Move rear one clockwise.Move rear one clockwise.
• Then put into queue[rear].

[2] [3][2] [3]
A B

front
[1] [4]C

front

[0] [5]
D

rear

Pop An ElementPop An Element
• Move front one clockwise.Move front one clockwise.

[2] [3][2] [3]
A B

front rear

[1] [4]C
front

[0] [5]

Pop An ElementPop An Element
• Move front one clockwise.Move front one clockwise.
• Then extract from queue[front].

[2] [3][2] [3]
A B

front
rear

[1] [4]C

[0] [5]

Moving rear ClockwiseMoving rear Clockwise
• rear++;;

if (rear = = capacity) rear = 0;

[2] [3]
A B

f rear

[1] [4]C
front rear

[0] [5]

• rear = (rear + 1) % capacity;

Empty That QueueEmpty That Queue
[2] [3]

C
front

rear

[1] [4]

AB

C

[0] [5]
AB

Empty That QueueEmpty That Queue
[2] [3]

C
rear

[1] [4]

B

C

[0] [5]
B

front

Empty That QueueEmpty That Queue
[2] [3]

C
rear

[1] [4]C

[0] [5]

front

Empty That QueueEmpty That Queue
[2] [3]

rear

[1] [4]

f [0] [5]front

• When a series of removes causes the queue to
become empty, front = rear.p y

• When a queue is constructed, it is empty.
• So initialize front = rear = 0.So initialize front rear 0.

A Full Tank PleaseA Full Tank Please
[2] [3]

C
front

rear

[1] [4]

AB

C

[0] [5]
AB

A Full Tank PleaseA Full Tank Please
[2] [3]rear

C
front

rear
D

[1] [4]

AB

C

[0] [5]
AB

A Full Tank PleaseA Full Tank Please
[2] [3] rear

C
front

e
D E

[1] [4]

AB

C

[0] [5]
AB

A Full Tank PleaseA Full Tank Please
[2] [3]

C
front

D E

[1] [4]

AB

C

rear

F

[0] [5]
AB rear

• When a series of adds causes the queue to
become full front = rearbecome full, front = rear.

• So we cannot distinguish between a full
queue and an empty queue!

Ouch!!!!!Ouch!!!!!
• Remedies.

Don’t let the queue get full.
• When the addition of an element will cause the queue to be

full, increase array size.
• This is what the text does.

Define a boolean variable lastOperationIsPush.
• Following each push set this variable to true.g p
• Following each pop set to false.
• Queue is empty iff (front == rear) && !lastOperationIsPushQ p y () p
• Queue is full iff (front == rear) && lastOperationIsPush

Ouch!!!!!Ouch!!!!!
• Remedies (continued).

Define an integer variable size.
• Following each push do size++.
• Following each pop do size--.
• Queue is empty iff (size == 0)
• Queue is full iff (size == arrayLength)

Performance is slightly better when first strategy isPerformance is slightly better when first strategy is
used.

Doubling Queue CapacityDoubling Queue Capacity
[2] [3] rear

D E

[1] [4]C
front

D E

Before enlarge array

[0]

[] []

[5]
AB 0 1 2 3 4 5

B C D E A

g y

[0] [5] B C D E A

After enlarge array
0 1 2 3 4 5 6 7 8 9 10 11

g y

B C D E A

0 1 2 3 4 5 6 7 8 9 10 11
Shift

0 1 2 3 4 5 6 7 8 9 10 11
B C D E A

HomeworkHomework

• Sec. 3.5 Exercise 1 (a) P157
Trace the program. (Find a path through the
maze with Lee’s Wire Router algorithm g
introduced in this section)

