
Applications of StackApplications of Stack

P th M t hi• Parentheses Matching
• Towers Of Hanoi/Brahma
• System Stack

R I A M• Rat In A Maze

Parentheses Matching by StackParentheses Matching by Stack

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)
0 1 2 3 4 5 6 7 position:

• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)
– Output pairs (u,v) such that the left parenthesis at

position u is matched with the right parenthesis at v.
• (2,6) (1,13) (15,19) (21,25) (27,31) (0,32) (34,38)

• (a+b))*((c+d)
– (0 4)– (0,4)
– right parenthesis at 5 has no matching left parenthesis
– (8,12)
– left parenthesis at 7 has no matching right parenthesis

Parentheses MatchingParentheses Matching

• scan expression from left to right• scan expression from left to right
• when a left parenthesis is encountered, add its

position to the stack
• when a right parenthesis is encountered remove• when a right parenthesis is encountered, remove

matching position from stack

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

1
2

0
1

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

6

1
2
6

0
1

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

1
13

0
1

(2,6)

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

115
0
1

(2,6) (1,13)

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

121
0
1

(2,6) (1,13) (15,19)

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

127
0
1

(2,6) (1,13) (15,19) (21,25)

ExampleExample

• (((a+b)*c+d e)/(f+g) (h+j)*(k l))/(m n)• (((a+b)*c+d-e)/(f+g)-(h+j)*(k-l))/(m-n)

1
0
1

(2,6) (1,13) (15,19) (21,25)(27,31) (0,32)

• and so on

RecursionRecursion

• Recursion is a fundamental programming
h i h id l l i ftechnique that can provide an elegant solution for

certain kinds of problems.

• A recursive definition is one which uses the word f
or concept being defined in the definition itself.

Example: Recursive Definition of N!Example: Recursive Definition of N!

• N!, for any positive integer N, is defined to be the product of all
integers between 1 and N inclusive.

• This definition can be expressed recursively as:

0! = 10! = 1
1! = 1 * 0!
N! = N * (N-1)!

• The concept of the factorial is defined in terms of another factorial.

• Eventually the base case of 0! is reached• Eventually, the base case of 0! is reached.

In class Exercise:
Fibonacci Numbers

• 1, 1, 2, 3, 5, 8, 13, 21, …
• Using a recursive formula to define Fibonacci

NumbersNumbers

HomeworkHomework

• 撰寫一個可執行的 iterative program
• input:：n

需判斷 n必須為一個大於等於零的整數– 需判斷 n必須為一個大於等於零的整數

• Output：fib(0) ~fib(n)
–

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

3
4

1
2
3

A B C
• 64 gold disks to be moved from tower A to tower C

h k• each tower operates as a stack
• cannot place big disk on top of a smaller one

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

3

1
2
3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

1
2

3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

1 2 3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

1 2
3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

12
3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

123

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

1
2

3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

3

1
2
3

• 3-disk Towers Of Hanoi/Brahma
A B C

3 disk Towers Of Hanoi/Brahma
• 7 disk moves

Recursive SolutionRecursive Solution

1

A B C

• n > 0 gold disks to be moved from A to C using Bn > 0 gold disks to be moved from A to C using B
• move top n-1 disks from A to B using C

Recursive SolutionRecursive Solution

1

A B C

• move top disk from A to Cmove top disk from A to C

Recursive SolutionRecursive Solution

1

A B C

• move top n-1 disks from B to C using Amove top n 1 disks from B to C using A

Recursive SolutionRecursive Solution

1

A B C

• moves(n) = 0 when n = 0moves(n) 0 when n 0
• moves(n) = 2*moves(n-1) + 1 = 2n-1 when n > 0

In Class ExerciseIn Class Exercise

• Show that
moves(n) = 2*moves(n-1) + 1 = 2n-1 when n

> 0> 0

Towers Of Hanoi/BrahmaTowers Of Hanoi/Brahma

• moves(64) = 1.8 * 1019 (approximately)
• Performing 109 moves/second a computer would take• Performing 109 moves/second, a computer would take

about 570 years to complete.
• At 1 disk move/min the monks will take about 3 4 * 1013• At 1 disk move/min, the monks will take about 3.4 * 1013

years.

System StackSystem Stack
• Whenever a function is invoked theWhenever a function is invoked, the

program creates a structure, referred to as
an acti ation record or a stack frame andan activation record or a stack frame, and
places it on top of the system stack.

fp
t dd

previous frame pointer

f

f

return address f

local variables

return address

previous frame pointer fp

main return address

previous frame pointer

main

Trace System StackTrace System Stack

double f()
{{

int a=1,b=1;
return a+b;

}
void main()
{{

int c=2, d;
d=f(); 2

d
d f();
d=d+d;

} return address.

previous frame pointer

c=2

return address.

Back to OS

Trace System StackTrace System Stack

double f()
{{

int a=1,b=1;
return a+b; b=1

}
void main()
{

previous frame pointer

a=1

{
int c=2, d;
d=f(); 2

d

return address.

d f();
d=d+d;

} return address.

previous frame pointer

c=2

return address.

Back to OS

Trace System StackTrace System Stack

double f()
{{

int a=1,b=1;
return a+b;

}
void main()
{{

int c=2, d;
d=f(); 2

d=2
d f();
d=d+d;

} return address.

previous frame pointer

c=2

return address.

Back to OS

Rat In A Maze

Rat In A Maze

• Move order is: right, down, left, upg p
• Block positions to avoid revisit.

Rat In A Maze

• Move order is: right, down, left, up
• Block positions to avoid revisit.

Rat In A Maze
0,0

• Move backward until we reach a square from which• Move backward until we reach a square from which
a forward move is possible.

Rat In A Maze

• Move down• Move down.

Rat In A Maze

• Move left• Move left.

Rat In A Maze

• Move down• Move down.

Rat In A Maze

• Move backward until we reach a square from which• Move backward until we reach a square from which
a forward move is possible.

Rat In A Maze

• Move backward until we reach a square from which
a forward move is possible.

• Move downward.

Rat In A Maze

• Move right• Move right.
• Backtrack.

Rat In A Maze

• Move downward• Move downward.

Rat In A Maze

• Move right• Move right.

Rat In A Maze

• Move one down and then right• Move one down and then right.

Rat In A Maze

• Move one up and then right• Move one up and then right.

Rat In A Maze

• Move down to exit and eat cheese.
P th f t t t iti t• Path from maze entry to current position operates as
a stack.

Remark: Allowable Moves for the
Rat in the Textbook

[i-1][j+1][i-1][j][i-1][j-1]
N

NENW

X
[i][j]

[i][j+1][i][j-1] EW

[i+1][j][i+1][j-1] [i+1][j+1]

S SESW

HomeworkHomework

• Sec. 3.5 Exercise 1 (b) P157
– Trace the program (find the path on the maze

with stack).)

