Representation of Arrays

Memory

\square 1-dimensional array $x=[a, b, c, d]$
\square map into contiguous memory locations

- location $(x[i])=$ start +i

Space Overhead

Memory

space overhead $=4$ bytes for start (memory address)
(excludes space needed for the elements of x)

2D Arrays

The elements of a 2-dimensional array a declared as:
int [][]a = new int[3][4]; may be shown as a table

```
a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]
```


Rows Of A 2D Array

$a[\theta][\theta] \quad a[\theta][1] \quad a[0][2]-a[0]\{3]$ row 0
$a[1][0] \quad a[1][1] \quad a[1][2]-a[1] t 3]$ row 1
$a[z][0] \quad a[2][1] \quad a[2][2]-a[2][3]$ row 2

Columns Of A 2D Array

2D Array Representation In C++

2-dimensional array x

$$
\begin{aligned}
& \text { a, b, c, d } \\
& \text { e, f, g, h } \\
& \text { i, j, k, l }
\end{aligned}
$$

view 2D array as a 1D array of rows

$$
x=[\text { row } 0, \text { row } 1, \text { row } 2]
$$

row $0=[a, b, c, d]$
row $1=[e, f, g, h]$
row $2=[i, j, k, l]$
and store as 4 1D arrays

Space Overhead

space overhead $=$ overhead for 4 1D arrays

$$
\begin{aligned}
& =4 * 4 \text { bytes } \\
= & 16 \text { bytes } \\
= & (\text { number of rows }+1) \times 4 \text { bytes }
\end{aligned}
$$

Array Representation In C++

This representation is called the array-of-arrays representation.Requires contiguous memory of size 3, 4, 4, and 4 for the 4 1D arrays.1 memory block of size number of rows and number of rows blocks of size number of columns

Row-Major Mapping

\square Example 3×4 array:

> a b c d
> e f g h
> i jkl

- Convert into 1D array y by collecting elements by rows.
\square Within a row elements are collected from left to right.
\square Rows are collected from top to bottom.
\square We get $y[] \quad\{a, b, c, d, e, f, g, h, i, j, k, l\}$

Locating Element $\mathrm{x}[\mathrm{i}][\mathrm{j}]$

0
C 2 c
3c
ic

\square assume x has r rows and c columns
\square each row has c elements
\square i rows to the left of row i
\square so ic elements to the left of $x[i][0]$
\square so $\times[i][j]$ is mapped to position

$$
\text { ic }+\mathrm{j} \text { of the 1D array }
$$

Space Overhead for Row-major Mapping

4 bytes for start of 1D array + 4 bytes for c (number of columns) $=8$ bytes \rightarrow Fixed! Doesn't change with array size
Compare to array of array representations:
(number of rows +1) $\times 4$ bytes
Remark: C++ use row-major mapping

Disadvantage

Row major mapping:
Need contiguous memory of size rc.
Array of array representation:

Column-Major Mapping

> abcd
> efgh
> i jkl
\square Convert into 1D array y by collecting elements by columns.
\square Within a column elements are collected from top to bottom.
\square Columns are collected from left to right.
\square We get $y=\{a, e, i, b, f, j, c, g, k, d, h, l\}$

In Class Exercise: Address of an element
\square Assume A is an array and size of each element is 1 . The address of $A[3,3]$ is at 121 and $A[6,4]$ is at 159 .
Find the address of the element
A[4,5].(Hint: Consider different address mapping of array A.)

Matrix

Table of values. Has rows and columns, but numbering begins at 1 rather than 0 .

$$
\begin{array}{ll}
\text { abcd } & \text { row } 1 \\
\text { efgh } & \text { row } 2 \\
\text { i jkl } & \text { row } 3
\end{array}
$$

UUse notation $x(i, j)$ rather than $x[i][j]$.
口May use a 2D array to represent a matrix.

Shortcomings Of Using A 2D Array For A Matrix

IIndexes are off by 1 .
$\square \mathrm{C}++$ arrays do not support matrix operations such as add, transpose, multiply, and so on.

- Suppose that x and y are 2D arrays. Can't do $x+y, x-y, x * y$, etc.
\square Develop a class Matrix for objectoriented support of all matrix operations.

Diagonal Matrix

$\square x(i, j)$ is on diagonal iff $i=j$
\square number of diagonal elements in an n x n matrix is n
\square non diagonal elements are zero
\square store diagonal only vs n^{2} whole

Lower Triangular Matrix (See Fig. 2.8 in P121)

An $n \times n$ matrix in which all nonzero terms are either on or below the diagonal.

1000
2300
4560
78910
$\square_{x}(i, j)$ is part of lower triangle iff $i>=j$.
\square number of elements in lower triangle is $1+2+$
$\ldots+n=n(n+1) / 2$.
\square store only the lower triangle

Array Of Arrays Representation

Use an irregular 2-D array ... length of rows is not required to be the same.

Creating An Irregular Array

// declare a two-dimensional array variable
// and allocate the desired number of rows
int ** irregularArray $=$ new int* [numberOfRows];
// now allocate space for the elements in each row for (int $\mathrm{i}=0$; i < numberOfRows; $\mathrm{i}++$)
irregularArray[i] = new int [length[i]];

Map Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms that are not part of the lower triangle.
For the matrix

$$
\begin{array}{cccc}
1 & 0 & 0 & 0 \\
2 & 3 & 0 & 0 \\
4 & 5 & 6 & 0 \\
7 & 8 & 9 & 10
\end{array}
$$

we get

$$
1,2,3,4,5,6,7,8,9,10
$$

Index Of Element [i][j]

001
0
:---

\square Order is: row 1 , row 2 , row $3, \ldots$
पRow i is preceded by rows $1,2, \ldots, i-1$
\square Size of row i is i.
-Number of elements that precede row i is $1+2+3+\ldots+i-1=i(i-1) / 2$
\square So element (i, j) is at position $\mathrm{i}(\mathrm{i}-1) / 2+\mathrm{j}-1$ of the 1D array.

