
Representation of Arrays

1

1D Array Representation In C++1D Array Representation In C++

Memory

a b c d

1 dimensional array x [a b c d]
start

1-dimensional array x = [a, b, c, d]
map into contiguous memory
locations

• location(x[i]) = start + iocat o ([]) sta t

Space OverheadSpace Overhead

Memory

a b c d

space overhead 4 bytes for start
start

space overhead = 4 bytes for start
(memory address)

(excludes space needed for the(excludes space needed for the
elements of x)

2D Arrays

The elements of a 2-dimensional array a
declared as:

int [][]a = new int[3][4];
b h t blmay be shown as a table

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]a[2][0] a[2][1] a[2][2] a[2][3]

fRows Of A 2D Array

a[0][0] a[0][1] a[0][2] a[0][3] row 0[][] [][] [][] [][]

a[1][0] a[1][1] a[1][2] a[1][3] row 1a[1][0] a[1][1] a[1][2] a[1][3] row 1

a[2][0] a[2][1] a[2][2] a[2][3] row 2

l fColumns Of A 2D Array

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]a[2][0] a[2][1] a[2][2] a[2][3]

column 0 column 1 column 2 column 3

2D Array Representation In C++2D Array Representation In C++

di i l2-dimensional array x
a, b, c, da, b, c, d
e, f, g, h

view 2D array as a 1D array of rows

i, j, k, l
y y

x = [row0, row1, row 2]
row 0 = [a,b, c, d][, , ,]
row 1 = [e, f, g, h]
row 2 = [i, j, k, l]row 2 [i, j, k, l]

and store as 4 1D arrays

Space OverheadSpace Overhead

a b c d

x[]

e f g h

i j k l

space overhead = overhead for 4 1D arrays
= 4 * 4 bytes 4 4 bytes
= 16 bytes

= (number of rows + 1) x 4 bytes (number of rows + 1) x 4 bytes

Array Representation In C++Array Representation In C++

a b c d

x[]

e f g h

This representation is called the array of arrays

i j k l

This representation is called the array-of-arrays
representation.
Requires contiguous memory of size 3 4 4 andRequires contiguous memory of size 3, 4, 4, and
4 for the 4 1D arrays.
1 memory block of size number of rows and1 memory block of size number of rows and
number of rows blocks of size number of
columns

R M j M iRow-Major Mapping

Example 3 x 4 array:

a b c d
e f g h
i j k l

Convert into 1D array y by collecting elements by rows.
Within a row elements are collected from left to right.
R ll t d f t t b ttRows are collected from top to bottom.

We get y[] = {a, b, c, d, e, f, g, h, i, j, k, l}

row 0 row 1 row 2 … row i

Locating Element x[i][j]Locating Element x[i][j]

row 0 row 1 row 2 … row i

0 c 2c 3c ic

assume x has r rows and c columns
each row has c elementseach row has c elements
i rows to the left of row i
so ic elements to the left of x[i][0]so ic elements to the left of x[i][0]
so x[i][j] is mapped to position

i j f th 1Dic + j of the 1D array

For n-dim Array

For Array a[u1][u2][u3]..[un]
The position for a[i1][i2][i3]..[in]The position for a[i1][i2][i3]..[in]
=i1u2u3…un+

i2u3u4 un+i2u3u4…un+
i3u4u5…un+

+… +
in-1un+in

12

Space Overhead for Row-major
Mapping

4 bytes for start of 1D array +

row 0 row 1 row 2 … row i

4 bytes for start of 1D array +
4 bytes for c (number of columns)
= 8 bytes Fixed! Doesn’t change with

array size
Compare to array of array representations:

(number of rows + 1) x 4 bytes(number of rows + 1) x 4 bytes
Remark: C++ use row-major mapping

Disadvantage

Row major mapping:
Need contiguous memory of sizeNeed contiguous memory of size

rc.

Array of array representation:Array of array representation:

Column-Major Mapping

a b c d
f he f g h

i j k lj
Convert into 1D array y by collecting
elements by columnselements by columns.
Within a column elements are collected
f t t b ttfrom top to bottom.
Columns are collected from left to right.
We get y = {a, e, i, b, f, j, c, g, k, d, h, l}

In Class Exercise: Address of anIn Class Exercise: Address of an
element

Assume A is an array and size of each
element is 1 The address ofelement is 1. The address of
A[3,3] is at 121 and A[6,4] is at 159.
Find the address of the elementFind the address of the element
A[4,5].(Hint: Consider different
address mapping of array A)address mapping of array A.)

16

M t iMatrix

Table of values. Has rows and columns,
b t b i b i t 1 th th 0but numbering begins at 1 rather than 0.

a b c d row 1
e f g h row 2
i j k l row 3i j k l row 3

Use notation x(i,j) rather than x[i][j].
May use a 2D array to represent a
matrix.

Shortcomings Of Using A 2D S o tco gs O Us g
Array For A Matrix

Indexes are off by 1Indexes are off by 1.
C++ arrays do not support matrix
ope ations s ch as add t ansposeoperations such as add, transpose,
multiply, and so on.

Suppose that x and y are 2D arrays. Can’t
do x + y, x –y, x * y, etc.

Develop a class Matrix for object-
oriented support of all matrix operations.pp p

Diagonal Matrixg

1 0 0 0
0 2 0 0 S i 1D0 2 0 0
0 0 3 0 1 2 3 4

Store in 1D array

0 0 0 4
x(i,j) is on diagonal iff i = jx(i,j) is on diagonal iff i j
number of diagonal elements in an n x

i in matrix is n
non diagonal elements are zerog
store diagonal only vs n2 whole

Lower Triangular Matrix
(See Fig. 2.8 in P121)(See Fig. 2.8 in P121)

An n x n matrix in which all nonzero terms are
either on or below the diagonal.

1 0 0 01 0 0 0
2 3 0 0
4 5 6 0
7 8 9 10

x(i,j) is part of lower triangle iff i >= j.
b f l t i l t i l i 1 + 2 +

7 8 9 10

number of elements in lower triangle is 1 + 2 +
… + n = n(n+1)/2.
store only the lower triangle

Array Of Arrays RepresentationArray Of Arrays Representation

1

x[]

1

2 3

4 5 6

7 8 9 l0

Use an irregular 2-D array … length of rows
is not required to be the same.q

Creating An Irregular ArrayCreating An Irregular Array

// declare a two-dimensional array variable

// and allocate the desired number of rows
int ** irregularArray = new int* [numberOfRows];

// now allocate space for the elements in each row
for (int i = 0; i < numberOfRows; i++)for (int i 0; i < numberOfRows; i++)

irregularArray[i] = new int [length[i]];

M L T i l A I A 1D AMap Lower Triangular Array Into A 1D Array

Use row-major order, but omit terms
that are not part of the lower triangle.that are not part of the lower triangle.

For the matrix
1 0 0 0
2 3 0 0
4 5 6 0
7 8 9 107 8 9 10

we get
1, 2, 3, 4, 5, 6, 7, 8, 9, 10

Index Of Element [i][j]Index Of Element [i][j]

r 1 r2 r3 … row i
0 1 3 6

Order is: row 1, row 2, row 3, …
i i d d b 2 iRow i is preceded by rows 1, 2, …, i-1

Size of row i is i.
Number of elements that precede row i is
1 + 2 + 3 + + i 1 = i(i 1)/21 + 2 + 3 + … + i-1 = i(i-1)/2

So element (i,j) is at position i(i-1)/2 + j -1
of the 1D array.

