
1

Matrices

Matrix table of values

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

Row 2

Column 4

4 x 5 matrix

4 rows

5 columns

20 elements

6 nonzero elements

2

Two Matrices

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−

472748

9812

1164109

2826

4327

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

0002800

0000091

000000

006000

0003110

150220015

Sparse Matrices

3

Sparse Matrices
Sparse matrix #nonzero elements/#elements

is small.

Examples:
• Diagonal

Only elements along diagonal may be nonzero

n x n matrix ratio is n/n2 = 1/n

• Tridiagonal
• Only elements on 3 central diagonals may be nonzero

• Ratio is (3n-2)/n2 = 3/n – 2/n2

1 0 0
0 2 0
0 0 3

4

Sparse Matrices
• Lower triangular

• Only elements on or below diagonal may be nonzero

• Ratio is n(n+1)/(2n2) ~ 0.5

These are structured sparse matrices. Nonzero
elements are in a well-defined portion of the
matrix.

1 0 0
2 2 0
3 3 3

5

Sparse Matrices
An n x n matrix may be stored as an n x n array.

This takes O(n2) space.

The example structured sparse matrices may be
mapped into a 1D array so that a mapping
function can be used to locate an element
quickly; the space required by the 1D array is
less than that required by an n x n array (next
lecture).

1 0 0
0 2 0
0 0 3

1 2 3

Diagonal matrix
1-D array

6

Unstructured Sparse Matrices
Airline flight matrix.

airports are numbered 1 through n

flight(i,j) = list of nonstop flights from airport i
to airport j

n = 1000 (say)

n x n array of list pointers 4 mega bytes
Assume each pointer use 4 bytes.

total number of nonempty flight lists = 20,000
(say)

need at most 20,000 list pointers at most
80,000 bytes

7

Unstructured Sparse Matrices

Web page matrix.
web pages are numbered 1 through n
web(i,j) = number of links from page i to page j

Web analysis.
authority page … page that has many links to it

Contain useful information about a topic.

hub page … links to many authority pages
The page is basically consisted of links.

8

Web Page Matrix
n = 2 billion (and growing by 1 million a day)

n x n array of ints 16 * 1018 bytes (=4*2*
109*2*109)=16 * 109 GB

each page links to 10 (say) other pages on
average

on average there are 10 nonzero entries per row

space needed for nonzero elements is
approximately 20 billion x 4 bytes = 80 billion
bytes (80 GB)

9

Representation Of Unstructured
Sparse Matrices

Single linear list in row-major order.
scan the nonzero elements of the sparse matrix in row-

major order (i.e., scan the rows left to right
beginning with row 1 and picking up the nonzero
elements)

each nonzero element is represented by a triple

(row, column, value)

the list of triples is stored in a 1D array

10

Single Linear List Example

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

list =

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

11

One Linear List Per Row

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

row1 = [(3, 3), (5,4)]

row2 = [(3,5), (4,7)]

row3 = []

row4 = [(2,2), (3,6)]

12

Single Linear List
• Class SparseMatrix

– Array smArray of triples of type MatrixTerm
• int row, col, value

– int rows, // number of rows

cols, // number of columns

terms, // number of nonzero elements

capacity; // size of smArray

• Size of smArray generally not predictable at time
of initialization.
– Start with some default capacity/size (say 10)

– Increase capacity as needed

13

Approximate Memory Requirements

500 x 500 matrix with 1994 nonzero elements, 4
bytes per element

2D array 500 x 500 x 4 = 1million bytes

Class SparseMatrix 3 x 1994 x 4 + 4 x 4

= 23,944 bytes

14

Array Resizing

if (newSize < terms) throw “Error”;

MatrixTerm *temp = new MatrixTerm[newSize];

copy(smArray, smArray+terms, temp);

delete [] smArray;

smArray = temp;

capacity = newSize;

15

Array Resizing

• To avoid spending too much overall time
resizing arrays, we generally set newSize =
c * oldSize, where c >0 is some constant.

• Quite often, we use c = 2 (array doubling)
or c = 1.5.

• Now, we can show that the total time spent
in resizing is O(s), where s is the maximum
number of elements added to smArray.

16

Matrix Transpose

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

0 0 0 0

0 0 0 2

3 5 0 6

0 7 0 0

4 0 0 0

17

Matrix Transpose

2 3 3 3 4 5

4 1 2 4 2 1

2 3 5 6 7 4

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

0 0 0 0

0 0 0 2

3 5 0 6

0 7 0 0

4 0 0 0

The order of
Nonzero elements
changes

In Class Exercise:
do the transposition and show the

Single Linear List

18

0 2 0 0 4

0 0 0 0 0

4 1 0 0 0

0 0 0 9 5

19

Matrix Transpose

• Assume m*n matrix with t nonzero elments

• Two algorithms
– Program 2.10

• O(nt)

• Easy to code

– Program 2.11
• O(n+t)

• Hard to think & code

20

Matrix Transpose
Program 2.10

B=0;

for(c=0; c<cols;c++)
{

for(i=0;i<terms;i++)
{

if(Array[i].col==c)
{
b.Array[B].row=c;
b.Array[B].col=Array[i].row;
b.Array[B].v=Array[i].v;
B=B+1;

}
}

}

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

Array

2 3 3 3 4 5

4 1 2 4 2 1

2 3 5 6 7 4

b.Array

Scan n times, each time
sacn t elements.

21

Fast Matrix Transpose
Program 2.11

row 1 1 2 2 4 4

column 3 5 3 4 2 3

value 3 4 5 7 2 6

0 0 3 0 4

0 0 5 7 0

0 0 0 0 0

0 2 6 0 0

0 0 0 0

0 0 0 2

3 5 0 6

0 7 0 0

4 0 0 0

Step 1: #nonzero in each row of transpose.

= #nonzero in each column of

original matrix

= [0, 1, 3, 1, 1]

Step2: Start of each row of transpose

= sum of size of preceding rows of

transpose

= [0, 0, 1, 4, 5]

Step 3: Move elements, left to right, from

original list to transpose list.

22

Fast Matrix Transpose
Step 1: #nonzero in each row of transpose.

= #nonzero in each column of

original matrix

= [0, 1, 3, 1, 1]

Step2: Start of each row of transpose

= sum of size of preceding rows of

transpose

= [0, 0, 1, 4, 5]

Step 3: Move elements, left to right, from

original list to transpose list.

Complexity

m x n original matrix

t nonzero elements

Step 1: O(t)

Step 2: O(n)

Step 3: O(t)

Overall O(n+t)

23

Runtime Performance

Matrix Transpose

500 x 500 matrix with 1994 nonzero elements

Run time measured on a 300MHz Pentium II PC

2D array 210 ms

SparseMatrix (Fast) 6 ms

24

Homework

• 2.4 Exercise 4 Page 107

