
Data Abstraction
and

Encapsulation

1 2

Data Abstraction and
Encapsulation

Definition: Data Encapsulation or Information Hiding is the
concealing of the implementation details of a data object
from the outside world.
Definition: Data Abstraction is the separation between
the specification of a data object and its implementation.
Definition: A data type is a collection of objects and a set
of operations that act on those objects.
Definition: An abstract data type (ADT) is a data type
that is organized in such a way that the specification of the
objects and the specification of the operations on the
objects is separated from the representation of the objects
and the implementation of the operations.

3

Advantages of Data Abstraction and
Data Encapsulation

Simplification of software development

Testing and Debugging

Reusability

Modifications to the representation of a data
type

4

ADT Example
ADT NaturalNumber is

objects: An ordered sub-range of the integers starting at zero and ending at the maximum
integer (MAXINT) on the computer.
functions: for all x, y belong to NaturalNumber; TRUE, FALSE belong to Boolean and
where +, -, <, ==, and = are the usual integer operations

Zero(): NaturalNumber ::= 0
IsZero(x): Boolean ::= if (x == 0) IsZero = TRUE

else IsZero = FALSE
Add(x, y): NaturalNumber ::= if (x+y <= MAXINT) Add = x + y

else Add = MAXINT
Equal(x, y): Boolean ::= if (x == y) Equal = TRUE

else Equal = FALSE
Successor(x): NaturalNumber ::= if (x == MAXINT) Successor = x

else Successor = x +1
Substract(x, y): NaturalNumber ::= if (x < y) Substract = 0

else Substract = x – y
end NaturalNumber

5

ADT & C++ Class
A class name

Data members

Member functions (operations)

Data
member

Function
member

class

class Rectangle
{

private:
int xLow,yLow,height,width

public:
int GetHeight()//method

{return height;}
};

6

Program 2.1 Definition of the C++
class Rectangle

#ifndef RECTANGLE_H
#define RECTANGLE_H
// In the header file
class Rectangle {
public: // The following members are public

Rectangle(); // Constructor
~Rectangle(); // Deconstructor
int GetHeight(); // return the height of the rectangle
int GetWidth(); // return the width of the rectangle

private: // The following members are private
int x1, y1, h, w;
// (x1, y1) are the coordinates of the bottom left corner of the rectangle
// w is the width of the rectangle; h is the height of the rectangle

};
#endif

7

物件的運作

外界程式碼

class宣告

{
public:

int GetHeight()
private:
外界無法呼叫

或存取

int x1;
}

物件的介面

呼叫

存取

物件的程式碼

int GetHeight()
{

}

8

Program 2.2 Implementation of
operations on Rectangle

// In the source file Rectangle.C

#include “Rectangle.h”

// The prefix “Rectangle::” identifies GetHeight() and GetWidth() as
member functions belong to class Rectangle. It is required because the
member functions are implemented outside their class definition

int Rectangle::GetHeight() {return h;}

int Rectangle::GetWidth() {return w;}

9

Constructor and Destructor
Constructor: is a member function which initializes data
members of an object.
• Advantage: all class objects are well-defined as soon as they are

created.
• Must have the same name of the class
• Must not specify a return type or a return value

Destructor: is a member function which deletes data
members immediately before the object disappears.
• Must be named identical to the name of the class prefixed with a

tilde ~.
• It is invoked automatically when a class object goes out of scope

or when a class object is deleted.

10

Examples of Constructor for
Rectangle

Rectangle::Rectangle (int x, int y, int height, int width)
{

x1 = x; y1 = y;
h = height; w = width;

}

Rectangle::Rectangle (int x = 0, int y = 0, int height = 0, int width = 0)
: x1(x), y1(y), h(height), w(width)
{ }

Rectangle r(1, 3, 6, 6);
Rectangle *s = new Rectangle(0, 0, 3, 4);

11

Operator Overloading
C++ can distinguish the operator == when
comparing two floating point numbers and two
integers. But what if you want to compare two
Rectangles?

int Rectangle::operator==(const Rectangle &s)
{

if (this == &s) return 1;
if ((x1 == s.x1) && (y1 == s.y1) && (h == s.h) && (w == s.w)) return 1;
else return 0;

}

Function Overloading

Function overloading is the practice of
declaring the same function with different
signatures. The same function name will be
used with different number of parameters
and parameters of different type.

Example(next page)

Implement

13

class Rectangle
{

private:
int xLow,yLow,height,width; //data member

public:
Rectangle(int x, int y,int h,int w) //constructor
{

xLow=x;
yLow=y;
height=h;
width=w;

}
Rectangle() //constrctor (function overloading)
{

xLow=0;
yLow=0;
height=1;
width=1;

}
int Rectangle::operator==(const Rectangle &s) //operator overloading

{
if ((xLow == s.xLow) && (yLow == s.yLow) &&

(height == s.height) && (width== s.width)) return 1;
else return 0;

}
public:
int GetHeight()//method

{return height;}
public :
int GetWidth()//method

{return width;}
};

int main(void)
{
int gh, gw,gh1,gw1,te;

string te2;
Rectangle r(1,2,10,6);
Rectangle r1;
gh=r.GetHeight();
gw=r.GetWidth();
gh1=r1.GetHeight();
gw1=r1.GetWidth();
te=r==r1;
if(te==1)
te2="yes";
else
te2="no";
cout<<"height of r is "<<gh<<endl;
cout<<"width of r is "<<gw<<endl<<endl;
cout<<"height of r1 is "<<gh1<<endl;
cout<<"width of r1 is "<<gw1<<endl;
cout<<"is the two same? "<<te2<<endl;
system("pause");
return 0;

}
height of r is 10
width of r is 6

height of r1 is 1
width of r1 is 1
is the two same? no

Output

14

Homework

Implement and test the class Rectangle. Do
Exercise 2.1 @P83
• The input is (1,4,2,8) and (1,1,3,8)

