
1

Performance Measurement

2

Performance Analysis

Paper and pencil.

Don’t need a working computer
program or even a computer.

3

Some Uses Of Performance Analysis

determine practicality of algorithm
predict run time on large instance
compare 2 algorithms that have
different asymptotic complexity

e.g., O(n) and O(n^2)

4

Limitations of Analysis

Doesn’t account for constant factors.

but constant factor may dominate
1000n vs n^2

and we are interested only in n < 1000

5

Limitations of Analysis

Modern computers have a hierarchical
memory organization with different
access time for memory at different
levels of the hierarchy.

6

Memory Hierarchy

R
L1

L2

MAIN

ALU

8-32 32KB 512KB 512MB
1C 2C 10C 100C

1C=1 cycleALU: Arithmetic Logic Unit
R: Registers
L1: Level-1 cache
L2: Level-2 cache
Main: Main memory

7

Limitations of Analysis

Our analysis doesn’t account for this
difference in memory access times.
Programs that do more work may
take less time than those that do less
work.
Compare:

100 operations on the same data
10 operations on the different data

8

Performance Measurement

Measure actual time on an actual
computer.

What do we need?

9

Performance Measurement Needs

programming language
working program
computer
compiler and options to use

10

Performance Measurement
Needs

data to use for measurement
worst-case data

Insertion sort: 5 4 3 2 1
best-case data

insertion sort: 1 2 3 4 5
average-case data

timing mechanism --- clock

11

Timing In C++

long start, stop;

time(start); // set start to current time in
// hundredths of a second

// code to be timed comes here

time(stop); // set stop to current time

long runTime = stop – start;
12

Shortcoming

Preceding measurement code is acceptable
only when the elapsed time is large relative
to the accuracy of the clock.
Clock accuracy: assume 1/100 second

If code to be timed is too small. We should
repeat work many times to bring total time
larger, says 1/10 sec.

13

Accurate Timing

time(start);
long counter;
do {

counter++;
doSomething();
time(stop);

} while (stop - start < 10)
double elapsedTime = stop - start;

double timeForTask = elapsedTime/counter;
14

Accuracy

Now accuracy is 10%.
first reading may be just about to
change to start + 1
second reading may have just
changed to stop
so stop - start is off by 1 unit

Start Start+1 Stop

Program run time=Stop-Start-1

15

Accuracy

first reading may have just changed to start

second reading may be about to change to
stop + 1

so stop - start is off by 1 unit

Start Start+1 Stop

Program run time=Stop-Start+1

Stop+1
16

Accuracy

Examining remaining cases, we get

trueElapsedTime = stop - start +- 1

To ensure 10% accuracy, require

elapsedTime = stop – start
>= 10

17

What Went Wrong?

time(start);
long counter;
do {

counter++;
insertionSort(a,n);
time(stop);

} while (stop - start < 10)
double elapsedTime = (stop – start);

double timeToSort = elapsedTime/counter;

Recall insertion sort:
Worst case: O(n^2) (inverse order)
Best case: O(n) (already sorted)

Measure worst-case running time:
1st time worst case, others: best case

18

The Fix

time(start);
long counter;
do {

counter++;
// put code to initialize a here
insertionSort(a,n);
time(stop);

} while (stop - start < 10)

Elapsed time=Initial time+ Sorting time

19

In Class Exercise:
Why below code is not a good way
to time?
do {

counter++;
time(start);
doSomething();
time(stop)
elapsedTime += stop - start;

} while (elapsedTime < 10)

