
Complexity Analysis

1

ComplexityComplexity

 Space
 The amount of memory space needed to run the y p

program.

 Time
 The amount of computational time needed to

run the program

We use insertion sort as an example
Pick an instance characteristic nPick an instance characteristic … n
n = a.length (the number of elements to be sorted)

2

Space Complexity for Insertion Sort

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

Fixed part:
independent of n

ex: instruction space{ [] []
int t = a[i];
int j;

ex: instruction space
Variables: i, j,,t
Variable part:

size dependent on nj;
for (j = i - 1; j >= 0 && t < a[j];
j--)

ex: a[]

Space requirement=
Fixed + Variable

a[j + 1] = a[j];
a[j + 1] = t;

Fixed + Variable

Focus on variable part:
a[] n

}

3

Time Complexity

 Count a particular operation
 Count number of steps Count number of steps
 Asymptotic complexity

4

Comparison CountComparison Count

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]{ [] []

int t = a[i];
int j;j;
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j] [j];
a[j + 1] = t;

}}

Determine the number of comparison count as a function of n

5

Comparison CountComparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

How many comparisons are made?How many comparisons are made?
Number of compares depends on
a[], t and i

6

Comparison CountComparison Count

 Worst-case count = maximum count
 Best case count = minimum count Best-case count = minimum count
 Average count

7

Worst Case Comparison CountWorst-Case Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 0 => 4 compares
a = [1 2 3 n] and t = 0 => n comparesa = [1,2,3,…,n] and t = 0 => n compares

8

Worst Case Comparison CountWorst-Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i 1; j >= 0 && t < a[j]; j)for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

total compares = 1 + 2 + 3 + + (n 1)total compares = 1 + 2 + 3 + … + (n-1)

= (n-1)n/2 (n 1)n/2

9

In Class Exercise:In Class Exercise:
Best Case Comparison Count

for (int i = 1; i < n; i++)
f (j i 1 j 0 && t [j] j)for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j] [j];

 a = [1 2 3 4] and t = 5 => 1 compares a = [1, 2, 3, 4] and t = 5 => 1 compares
 a = [1,2,3,…,n] and t = n+1 =>1 compares
 Compute the total number of comparison Compute the total number of comparison

10

Step CountStep Count

A step is an amount of computing that
does not depend on the instancedoes not depend on the instance
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step

11

Step per execution (s/e)Step per execution (s/e)
s/e

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0

int t = a[i]; 1
int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1for (j i 1; j 0 && t a[j]; j) 1

a[j + 1] = a[j]; 1
a[j + 1] = t; 1a[j + 1] = t; 1

} 0

12

Step per executionStep per execution

s/e isn’t always 0 or 1

x = sum(a, n);

where n is the instance characteristic
and
sum adds a[0:n-1] has a s/e count of nsum adds a[0:n 1] has a s/e count of n

(a[0]+a[1]+a[2]+…+a[n-1])

13

Step CountStep Count
s/e steps

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0{ [] []

int t = a[i]; 1
int j; 0

i
i+ 1

int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1

a[j + 1] = a[j]; 1 ia[j + 1] = a[j]; 1
a[j + 1] = t; 1

} 0
Worst case analysis

} 0

14

Step CountStep Count

for (int i = 1; i < a.length; i++)
{ 2i + 3}

step count for
for (int i = 1; i < a.length; i++)

is n

step count for body of for loop is
2(1+2+3+ +n 1) + 3(n 1)2(1+2+3+…+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)

15

= (n-1)(n+3)

s/e frequency total steps

for (int i = 1; i < a.length; i++) 1 n n

{ // insert a[i] into a[0:i-1] 0 n-1 0{ // insert a[i] into a[0:i 1]
int t = a[i]; 1 n-1 n-1

int j; 0 n-1 0int j;
for (j = i - 1; j >= 0 && t < a[j];j--) 1 (n-1)(n+2)/2

a[j + 1] = a[j]; 1 n(n-1)/2a[j + 1] = a[j]; 1 n(n 1)/2

a[j + 1] = t; 1 n-1 n-1

} 0 n 1 0} 0 n-1 0

Total：n^2+3n-3
16

Total n 2 3n 3

In Class Exercise:
Determine the s/e, frequency counts, and total steps
for all statements in the following program segment

for(i=1;i<=n;i++)
for(j=1;j<=i;j++)for(j 1;j< i;j++)

for(k=1;k<=j;k++)
x++;x++;

17

Asymptotic Complexity of y p p y
Insertion Sort

 (n-1)(n+3)O(n2)
 What does this mean? What does this mean?

18

Big-Oh Notation
 Gi f i d 10,000

3n

 Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are

1,000 2n+10

n

(g())
positive constants
c and n0 such that

100f(n) ≤ cg(n) for n ≥ n0

 Example: 2n + 10 is O(n)
 2 + 10 ≤

1

10 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2) 1

1 10 100 1,000
n

n ≥ 10/(c 2)
 Pick c = 3 and n0 = 10

19

Big-Oh Example

100 000

1,000,000
n^2

100n
)(not isfunction the:Example 2 nOn

1 000

10,000

100,000 100n

10n

n

 2

cn
cnn

≤−
≤−

10

100

1,000

constant a bemust since
satisfied becannot inequality above the

c

1
1 10 100 1,000

n

20

Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on the
growth rate of a function

 Th “ i ” h h h The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions We can use the big Oh notation to rank functions
according to their growth rate

f() i O(()) () i O(f())f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

21

Complexity of Insertion SortComplexity of Insertion Sort

 Time or number of operations does
not exceed c.n2 on any input of sizenot exceed c.n on any input of size
n (n suitably large).

 Act all the o st case time is Θ(n2) Actually, the worst-case time is Θ(n2)
and the best-case is Θ(n)

 So, the worst-case time is expected
to quadruple each time n is doubledq p

The definition of Θ (n) will be discussed finallyThe definition of Θ (n) will be discussed finally.

Complexity of Insertion SortComplexity of Insertion Sort

 Is O(n2) too much time?
 Is the algorithm practical? Is the algorithm practical?

Practical Complexities
109 instructions/second

n n nlogn n2 n3n n nlogn n n

1000 1mic 10mic 1milli 1sec

10000 10mic 130mic 100milli 17min10000 10mic 130mic 100milli 17min

106 1 illi 20 illi 17 i 32106 1milli 20milli 17min 32years

24

Impractical Complexities

n n4 n10 2n
109 instructions/second
n n n 2

1000 17min 3.2 x 1013 3.2 x 10283
years years

10000 116 ??? ???10000

116
days

 ??? ???

106 3 x 107 ?????? ??????106 3 x 107
years

?????? ??????

25

Faster Computer v s Better algorithmFaster Computer v.s Better algorithm

Algorithmic improvement more usefulAlgorithmic improvement more useful
than hardware improvement.

E g 2n to n3E.g. 2 to n

Relatives of Big OhRelatives of Big-Oh

 bi O big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that g 0

f(n) ≥ c•g(n) for n ≥ n0

 big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 f(n) is Θ(g(n)) if there are constants c > 0 and c > 0

and an integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤
c’’•g(n) for n ≥ n0

 little oh little-oh
 f(n) is o(g(n)) if, for any constant c > 0, there is an

integer constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

 little-omega
 f(n) is ω(g(n)) if, for any constant c > 0, there is an

integer constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0

27

Intuition for AsymptoticIntuition for Asymptotic
Notation

 Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

 big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

 big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)() (g()) () y p y q g()

 little-oh
 f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n) f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

 little-omega
 f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n)

28

() (g()) () y p y y g g()

Example

2 42)(++= nnnf
2

))(()(
)(
)(

=
=

ngnf
nng

f

θ

7",1'

))(()(

==
−−−−−−−−−−−−−

cc

ngnf θ

222 1*7411*21*1
1),(*7)()(1

,

<=++<=

>=<=<=∗ nforngnfng
17411211 <++<

29

)(01
1

1
mm ananananf ++++= −

E l
)()(

)(011
m

mm

nOnf
ananananf

=

++++ −Example

1
1 1 0() m m

m m
m

f n a n a n a n a−
−= + + +

0

i
i

i
m

a n
=

=

0

m
i

i
i

a n
=

≤

0

m
m i m

i
i

n a n −

=

= ⋅

0

m
m

i
i

n a
=

≤ ⋅
30

Homework
Determine the frequency counts for all statements and
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // n is number of elements stored in array{ // y
for (int j=0;j<n-i-1;j++)

{{
if(array[j]>array[j+1])
Swap(array[j],array[j+1]);Swap(array[j],array[j 1]);

}
}}

31

