
Complexity Analysis

1

ComplexityComplexity

 Space
 The amount of memory space needed to run the y p

program.

 Time
 The amount of computational time needed to

run the program

We use insertion sort as an example
Pick an instance characteristic nPick an instance characteristic … n
n = a.length (the number of elements to be sorted)

2

Space Complexity for Insertion Sort

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

Fixed part:
independent of n

ex: instruction space{ [] []
int t = a[i];
int j;

ex: instruction space
Variables: i, j,,t
Variable part:

size dependent on nj;
for (j = i - 1; j >= 0 && t < a[j];
j--)

ex: a[]

Space requirement=
Fixed + Variable

a[j + 1] = a[j];
a[j + 1] = t;

Fixed + Variable

Focus on variable part:
a[]  n

}

3

Time Complexity

 Count a particular operation
 Count number of steps Count number of steps
 Asymptotic complexity

4

Comparison CountComparison Count

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]{ [] []

int t = a[i];
int j;j;
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j] [j];
a[j + 1] = t;

}}

Determine the number of comparison count as a function of n

5

Comparison CountComparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

How many comparisons are made?How many comparisons are made?
Number of compares depends on
a[], t and i

6

Comparison CountComparison Count

 Worst-case count = maximum count
 Best case count = minimum count Best-case count = minimum count
 Average count

7

Worst Case Comparison CountWorst-Case Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 0 => 4 compares
a = [1 2 3 n] and t = 0 => n comparesa = [1,2,3,…,n] and t = 0 => n compares

8

Worst Case Comparison CountWorst-Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i 1; j >= 0 && t < a[j]; j)for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

total compares = 1 + 2 + 3 + + (n 1)total compares = 1 + 2 + 3 + … + (n-1)

= (n-1)n/2 (n 1)n/2

9

In Class Exercise:In Class Exercise:
Best Case Comparison Count

for (int i = 1; i < n; i++)
f (j i 1 j 0 && t [j] j)for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j] [j];

 a = [1 2 3 4] and t = 5 => 1 compares a = [1, 2, 3, 4] and t = 5 => 1 compares
 a = [1,2,3,…,n] and t = n+1 =>1 compares
 Compute the total number of comparison Compute the total number of comparison

10

Step CountStep Count

A step is an amount of computing that
does not depend on the instancedoes not depend on the instance
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step

n adds cannot be counted as 1 step

11

Step per execution (s/e)Step per execution (s/e)
s/e

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0

int t = a[i]; 1
int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1for (j i 1; j 0 && t a[j]; j) 1

a[j + 1] = a[j]; 1
a[j + 1] = t; 1a[j + 1] = t; 1

} 0

12

Step per executionStep per execution

s/e isn’t always 0 or 1

x = sum(a, n);

where n is the instance characteristic
and
sum adds a[0:n-1] has a s/e count of nsum adds a[0:n 1] has a s/e count of n

(a[0]+a[1]+a[2]+…+a[n-1])

13

Step CountStep Count
s/e steps

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1] 0{ [] []

int t = a[i]; 1
int j; 0

i
i+ 1

int j; 0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1

a[j + 1] = a[j]; 1 ia[j + 1] = a[j]; 1
a[j + 1] = t; 1

} 0
Worst case analysis

} 0

14

Step CountStep Count

for (int i = 1; i < a.length; i++)
{ 2i + 3}

step count for
for (int i = 1; i < a.length; i++)

is n

step count for body of for loop is
2(1+2+3+ +n 1) + 3(n 1)2(1+2+3+…+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)

15

= (n-1)(n+3)

s/e frequency total steps

for (int i = 1; i < a.length; i++) 1 n n

{ // insert a[i] into a[0:i-1] 0 n-1 0{ // insert a[i] into a[0:i 1]
int t = a[i]; 1 n-1 n-1

int j; 0 n-1 0int j;
for (j = i - 1; j >= 0 && t < a[j];j--) 1 (n-1)(n+2)/2

a[j + 1] = a[j]; 1 n(n-1)/2a[j + 1] = a[j]; 1 n(n 1)/2

a[j + 1] = t; 1 n-1 n-1

} 0 n 1 0} 0 n-1 0

Total：n^2+3n-3
16

Total n 2 3n 3

In Class Exercise:
Determine the s/e, frequency counts, and total steps
for all statements in the following program segment

for(i=1;i<=n;i++)
for(j=1;j<=i;j++)for(j 1;j< i;j++)

for(k=1;k<=j;k++)
x++;x++;

17

Asymptotic Complexity of y p p y
Insertion Sort

 (n-1)(n+3)O(n2)
 What does this mean? What does this mean?

18

Big-Oh Notation
 Gi f i d 10,000

3n

 Given functions f(n) and
g(n), we say that f(n) is
O(g(n)) if there are

1,000 2n+10

n

(g())
positive constants
c and n0 such that

100f(n) ≤ cg(n) for n ≥ n0

 Example: 2n + 10 is O(n)
 2 + 10 ≤

1

10 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2) 1

1 10 100 1,000
n

n ≥ 10/(c 2)
 Pick c = 3 and n0 = 10

19

Big-Oh Example

100 000

1,000,000
n^2

100n
)(not isfunction the:Example 2 nOn

1 000

10,000

100,000 100n

10n

n

 2

cn
cnn

≤−
≤−

10

100

1,000

constant a bemust since
satisfied becannot inequality above the

c

1
1 10 100 1,000

n

20

Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on the
growth rate of a function

 Th “ i ” h h h The statement “f(n) is O(g(n))” means that the growth
rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions We can use the big Oh notation to rank functions
according to their growth rate

f() i O(()) () i O(f())f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes

21

Complexity of Insertion SortComplexity of Insertion Sort

 Time or number of operations does
not exceed c.n2 on any input of sizenot exceed c.n on any input of size
n (n suitably large).

 Act all the o st case time is Θ(n2) Actually, the worst-case time is Θ(n2)
and the best-case is Θ(n)

 So, the worst-case time is expected
to quadruple each time n is doubledq p

The definition of Θ (n) will be discussed finallyThe definition of Θ (n) will be discussed finally.

Complexity of Insertion SortComplexity of Insertion Sort

 Is O(n2) too much time?
 Is the algorithm practical? Is the algorithm practical?

Practical Complexities
109 instructions/second

n n nlogn n2 n3n n nlogn n n

1000 1mic 10mic 1milli 1sec

10000 10mic 130mic 100milli 17min10000 10mic 130mic 100milli 17min

106 1 illi 20 illi 17 i 32106 1milli 20milli 17min 32years

24

Impractical Complexities

n n4 n10 2n
109 instructions/second
n n n 2

1000 17min 3.2 x 1013 3.2 x 10283
years years

10000 116 ??? ???10000

116
days

 ??? ???

106 3 x 107 ?????? ??????106 3 x 107
years

?????? ??????

25

Faster Computer v s Better algorithmFaster Computer v.s Better algorithm

Algorithmic improvement more usefulAlgorithmic improvement more useful
than hardware improvement.

E g 2n to n3E.g. 2 to n

Relatives of Big OhRelatives of Big-Oh

 bi O big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0

and an integer constant n0 ≥ 1 such that g 0

f(n) ≥ c•g(n) for n ≥ n0

 big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 f(n) is Θ(g(n)) if there are constants c > 0 and c > 0

and an integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤
c’’•g(n) for n ≥ n0

 little oh little-oh
 f(n) is o(g(n)) if, for any constant c > 0, there is an

integer constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

 little-omega
 f(n) is ω(g(n)) if, for any constant c > 0, there is an

integer constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0

27

Intuition for AsymptoticIntuition for Asymptotic
Notation

 Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

 big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

 big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)() (g()) () y p y q g()

 little-oh
 f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n) f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

 little-omega
 f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n)

28

() (g()) () y p y y g g()

Example

2 42)(++= nnnf
2

))(()(
)(
)(

=
=

ngnf
nng

f

θ

7",1'

))(()(

==
−−−−−−−−−−−−−

cc

ngnf θ

222 1*7411*21*1
1),(*7)()(1

,

<=++<=

>=<=<=∗ nforngnfng
17411211 <++<

29

)(01
1

1
mm ananananf ++++= − 

E l
)()(

)(011
m

mm

nOnf
ananananf

=

++++ −Example

1
1 1 0() m m

m m
m

f n a n a n a n a−
−= + + +





0

i
i

i
m

a n
=

=

0

m
i

i
i

a n
=

≤

0

m
m i m

i
i

n a n −

=

= ⋅

0

m
m

i
i

n a
=

≤ ⋅
30

Homework
Determine the frequency counts for all statements and
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // n is number of elements stored in array{ // y
for (int j=0;j<n-i-1;j++)

{{
if(array[j]>array[j+1])
Swap(array[j],array[j+1]);Swap(array[j],array[j 1]);

}
}}

31

