Complexity Analysis

Complexity

\square Space

- The amount of memory space needed to run the program.Time
- The amount of computational time needed to run the program

We use insertion sort as an example
Pick an instance characteristic ... n
$\mathrm{n}=\mathrm{a}$.length (the number of elements to be sorted)

Space Complexity for Insertion Sort

```
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
    int t = a[i];
    int j;
    for (j = i - 1; j >= 0 && t < a[j]
    j--)
        a[j + 1] = a[j]
    a[j + 1] = t;
}
```


Time Complexity

\square Count a particular operationCount number of stepsAsymptotic complexity

Comparison Count

```
for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]
    int t = a[i];
    int j;
    for (j = i - 1; j >= 0 && t < a[j]; j--)
        a[j + 1] = a[j];
    a[j + 1] = t;
}
```

Determine the number of comparison count as a function of n

Comparison Count

\square Worst-case count $=$ maximum countBest-case count $=$ minimum countAverage count

Comparison Count

$$
\begin{aligned}
& \text { for }(j=i-1 ; j>=0 \& \& t<a[j] ; j--) \\
& \quad a[j+1]=a[j] ;
\end{aligned}
$$

How many comparisons are made? Number of compares depends on a[], t and i
\qquad

Worst-Case Comparison Count

$$
\begin{aligned}
& \text { for }(j=i-1 ; j>=0 \& \& t<a[j] ; j--) \\
& \qquad \\
& \quad a[j+1]=a[j] ; \\
& a=[1,2,3,4] \text { and } t=0=>4 \text { compares } \\
& a=[1,2,3, \ldots, n] \text { and } t=0=>n \text { compares }
\end{aligned}
$$

Worst-Case Comparison Count

In Class Exercise:
 Best Case Comparison Count

```
for (int i = 1; i < n; i++)
    for (j = i - 1; j >= 0 && t < a[j]; j--)
        a[j + 1] = a[j];
```

total compares $=1+2+3+\ldots+(n-1)$
$=(n-1) n / 2$

Step Count

A step is an amount of computing that does not depend on the instance characteristic n

10 adds, 100 subtracts, 1000 multiplies can all be counted as a single step
n adds cannot be counted as 1 step

Step per execution

s/e isn't always 0 or 1
$x=\operatorname{sum}(a, n)$;
where n is the instance characteristic and
sum adds $a[0: n-1]$ has a s/e count of n $(a[0]+a[1]+a[2]+\ldots+a[n-1])$

Step Count

	s/e	steps
for (int $\mathrm{i}=1$; $\mathrm{i}<$ a.length; $\mathrm{i}++$)	1	
\{// insert a[i] into a[0:i-1]	0	
int $\mathrm{t}=\mathrm{a}[\mathrm{i}]$;	1	
int j;	0	
for ($\mathrm{j}=\mathrm{i}-1 ; \mathrm{j}>=0$ \& t < $\mathrm{a}_{\text {[j] }}$; j--)	1	$i+1$
$a[j+1]=a[j] ;$	1	i
$a[j+1]=t ;$	1	
\}	0	

Step Count

```
```

for (int i = 1; i < a.length; i++)

```
```

for (int i = 1; i < a.length; i++)
{2i+3}

```
```

{2i+3}

```
```

step count for
for (int $\mathrm{i}=1 ; \mathrm{i}<$ a.length; $\mathrm{i}++$)
is n
step count for body of for loop is
$2(1+2+3+\ldots+n-1)+3(n-1)$
$=(n-1) n+3(n-1)$
$=(n-1)(n+3)$

for (int i = 1; i < a.length; i++) 1 n n
for (int i = 1; i < a.length; i++) 1 n n
{ // insert a[i] into a[0:i-1] 0 n-1 0
{ // insert a[i] into a[0:i-1] 0 n-1 0
int t = a[i]; 1 n-1 n-1
int t = a[i]; 1 n-1 n-1
int j; 0 n-1 0
int j; 0 n-1 0
for (j = i - 1; j >= 0 \&\& t < a[j];j--) 1 (n-1)(n+2)/2
for (j = i - 1; j >= 0 \&\& t < a[j];j--) 1 (n-1)(n+2)/2
a[j + 1] = a[j]; 1 n(n-1)/2
a[j + 1] = a[j]; 1 n(n-1)/2
a[j + 1] = t; 1 n-1 n-1
a[j + 1] = t; 1 n-1 n-1
\}

In Class Exercise:

Determine the s/e, frequency counts, and total steps
for all statements in the following program segment

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++) \\
& \mathrm{for}(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{i} ; \mathrm{j}++) \\
& \mathrm{for}(\mathrm{k}=1 ; \mathrm{k}<=\mathrm{j} ; \mathrm{k}++) \\
& \mathrm{x}++;
\end{aligned}
$$

Asymptotic Complexity of Insertion Sort

$\square(\mathrm{n}-1)(\mathrm{n}+3) \rightarrow \mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$What does this mean?

Big-Oh Notation

Given functions $\boldsymbol{f}(\boldsymbol{n})$ and
$\boldsymbol{g}(\boldsymbol{n})$, we say that $\boldsymbol{f}(\boldsymbol{n})$ is
$\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$) if there are
positive constants
\boldsymbol{c} and $\boldsymbol{n}_{\mathbf{0}}$ such that
$\boldsymbol{f}(\boldsymbol{n}) \leq \boldsymbol{c g}(\boldsymbol{n})$ for $\boldsymbol{n} \geq \boldsymbol{n}_{\mathbf{0}}$
\square
Example: $2 \boldsymbol{n}+10$ is $\boldsymbol{O}(\boldsymbol{n})$
\square
$\mathbf{2 n}+10 \leq \boldsymbol{c n}$
$(\boldsymbol{c}-2) \boldsymbol{n} \geq 10$

Big-Oh Example

Example : the function n^{2} is not $O(n)$
$-n^{2} \leq c n$
$-n \leq c$
the above inequality cannot be satisfied since c must be a constant

Big-Oh and Growth Rate

\square The big-Oh notation gives an upper bound on the growth rate of a function
\square The statement " $f(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n})$)" means that the growth rate of $f(n)$ is no more than the growth rate of $\boldsymbol{g}(\boldsymbol{n})$
\square We can use the big-Oh notation to rank functions according to their growth rate

	$\boldsymbol{f}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{g}(\boldsymbol{n}))$	$\boldsymbol{g}(\boldsymbol{n})$ is $\boldsymbol{O}(\boldsymbol{f}(\boldsymbol{n}))$
$\boldsymbol{g}(\boldsymbol{n})$ grows more	Yes	No
$\boldsymbol{f}(\boldsymbol{n})$ grows more	No	Yes
Same growth	Yes	Yes

Complexity of Insertion Sort

Time or number of operations does not exceed c. \mathbf{n}^{2} on any input of size n (n suitably large).Actually, the worst-case time is $\Theta\left(\mathbf{n}^{\mathbf{2}}\right)$ and the best-case is $\Theta(\mathbf{n})$So, the worst-case time is expected to quadruple each time \mathbf{n} is doubled
Complexity of Insertion Sort

\square Is $\mathbf{O}\left(\mathbf{n}^{\mathbf{2}}\right)$ too much time?
\square Is the algorithm practical?

Practical Complexities

10^{9} instructions/ second

Impractical Complexities

10^{9} instructions/second

\boldsymbol{n}	$\boldsymbol{n}^{\mathbf{4}}$	$\boldsymbol{n}^{\mathbf{1 0}}$	$\mathbf{2}^{\boldsymbol{n}}$
$\mathbf{1 0 0 0}$	17 min	3.2×10^{13} years	3.2×10^{283} years
$\mathbf{1 0 0 0 0}$	116 days	???	???
$\mathbf{1 0 0}$	3×10^{7} years	??????	??????

Faster Computer v.s Better algorithm

Algorithmic improvement more useful than hardware improvement.
E.g. 2^{n} to n^{3}

Relatives of Big-Oh

big-Omega

- $f(n)$ is $\Omega(g(n))$ if there is a constant $c>0$ and an integer constant $n_{0} \geq 1$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$
big-Theta
- $f(n)$ is $\Theta(g(n))$ if there are constants $c^{\prime}>0$ and $c ">0$ and an integer constant $n_{0} \geq 1$ such that $c^{\prime} \cdot g(n) \leq f(n) \leq$ $\mathrm{c} " \cdot \mathrm{~g}(\mathrm{n})$ for $\mathrm{n} \geq \mathrm{n}_{0}$
\square little-oh
■ $f(n)$ is $o(g(n))$ if, for any constant $c>0$, there is an integer constant $n_{0} \geq 0$ such that $f(n) \leq c \cdot g(n)$ for $n \geq n_{0}$
little-omega
■ $f(n)$ is $\omega(g(n))$ if, for any constant $c>0$, there is an integer constant $n_{0} \geq 0$ such that $f(n) \geq c \cdot g(n)$ for $n \geq n_{0}$

Intuition for Asymptotic Notation
$\square \quad$ Big-Oh

- $f(n)$ is $O(g(n))$ if $f(n)$ is asymptotically less than or equal to $g(n)$
\square big-Omega
■ $\mathrm{f}(\mathrm{n})$ is $\Omega(\mathrm{g}(\mathrm{n}))$ if $\mathrm{f}(\mathrm{n})$ is asymptotically greater than or equal to $\mathrm{g}(\mathrm{n})$
\square big-Theta
- $f(n)$ is $\Theta(g(n))$ if $f(n)$ is asymptotically equal to $g(n)$
- little-oh
- $f(n)$ is $o(g(n))$ if $f(n)$ is asymptotically strictly less than $g(n)$
\square little-omega
- $f(n)$ is $\omega(g(n))$ if $f(n)$ is asymptotically strictly greater than $g(n)$

Example

$$
\begin{aligned}
& f(n)=2 n^{2}+n+4 \\
& g(n)=n^{2} \\
& f(n)=\theta(g(n)) \\
& ------------ \\
& c^{\prime}=1, c^{\prime \prime}=7 \\
& 1 * g(n)<=f(n)<=7 * g(n), \text { for } n>=1 \\
& 1^{*} 1^{2}<=2 * 1^{2}+1+4<=7 * 1^{2}
\end{aligned}
$$

Homework

Determine the frequency counts for all statements and analysis the complexity for the program segment

```
for(int i=0;i<n;i++)
    { // n is number of elements stored in array
        for (int j=0;j<n-i-1;j++)
            {
            if(array[j]>array[j+1])
                Swap(array[j],array[j+1]);
            }
}
```

