
Complexity Analysis
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ComplexityComplexity 

 Space
 The amount of memory space needed to run the y p

program.

 Time
 The amount of computational time needed to 

run the program

We use insertion sort as an example 
Pick an instance characteristic nPick an instance characteristic … n
n = a.length (the number of elements to be sorted)
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Space Complexity for Insertion Sort

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]

Fixed part:
independent of n

ex: instruction space{ [ ] [ ]
int t = a[i];
int j;

ex:  instruction space
Variables: i, j,,t
Variable part: 

size dependent on nj;
for (j = i - 1; j >= 0 && t < a[j]; 
j--)

ex: a[]

Space requirement=
Fixed + Variable

a[j + 1] = a[j];
a[j + 1] = t;

Fixed + Variable

Focus on variable part:
a[]  n

}
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Time Complexity

 Count a particular operation
 Count number of steps Count number of steps
 Asymptotic complexity
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Comparison CountComparison Count

for (int i = 1; i < a.length; i++)
{// insert a[i] into a[0:i-1]{ [ ] [ ]

int t = a[i];
int j;j;
for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j ] [j];
a[j + 1] = t;

}}

Determine the number of comparison count as a function of n
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Comparison CountComparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

How many comparisons are made?How many comparisons are made?
Number of compares depends on 
a[], t and i
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Comparison CountComparison Count

 Worst-case count = maximum count
 Best case count = minimum count Best-case count = minimum count
 Average count
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Worst Case Comparison CountWorst-Case Comparison Count

for (j = i - 1; j >= 0 && t < a[j]; j--)
a[j + 1] = a[j];a[j + 1] = a[j];

a = [1, 2, 3, 4] and t = 0 => 4 compares
a = [1 2 3 n] and t = 0 => n comparesa = [1,2,3,…,n] and t = 0 => n compares
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Worst Case Comparison CountWorst-Case Comparison Count

for (int i = 1; i < n; i++)
for (j = i 1; j >= 0 && t < a[j]; j )for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];

total compares = 1 + 2 + 3 + + (n 1)total compares = 1 + 2 + 3 + … + (n-1)

= (n-1)n/2 (n 1)n/2
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In Class Exercise:In Class Exercise:
Best Case Comparison Count 

for (int i = 1; i < n; i++)
f (j i 1 j 0 && t [j] j )for (j = i - 1; j >= 0 && t < a[j]; j--)

a[j + 1] = a[j];[j ] [j];

 a = [1 2 3 4] and t = 5 => 1 compares a = [1, 2, 3, 4] and t = 5 => 1 compares
 a = [1,2,3,…,n] and t = n+1 =>1 compares
 Compute the total number of comparison Compute the total number of comparison
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Step CountStep Count

A step is an amount of computing that 
does not depend on the instancedoes not depend on the instance 
characteristic n

10 adds, 100 subtracts, 1000 multiplies
can all be counted as a single step 

n adds cannot be counted as 1 step
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Step per execution (s/e)Step per execution (s/e)
s/e

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1]                             0

int t = a[i];                                                1
int j;                                                         0
for (j = i - 1; j >= 0 && t < a[j]; j--) 1for (j  i 1; j  0 && t  a[j]; j )            1

a[j + 1] = a[j];                                       1
a[j + 1] = t; 1a[j + 1] = t;                                               1

}                                                                  0
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Step per executionStep per execution

s/e isn’t always 0 or 1

x = sum(a, n);

where n is the instance characteristic
and 
sum adds a[0:n-1] has a s/e count of nsum adds a[0:n 1] has a s/e count of n

(a[0]+a[1]+a[2]+…+a[n-1])
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Step CountStep Count
s/e steps

for (int i = 1; i < a.length; i++) 1
{// insert a[i] into a[0:i-1]                             0{ [ ] [ ]

int t = a[i];                                                1
int j; 0

i
i+ 1

int j;                                                         0
for (j = i - 1; j >= 0 && t < a[j]; j--)            1

a[j + 1] = a[j]; 1 ia[j + 1] = a[j];                                       1
a[j + 1] = t;                                               1

} 0
Worst case analysis

}                                                                  0
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Step CountStep Count

for (int i = 1; i < a.length; i++)      
{ 2i + 3}

step count for
for (int i = 1; i < a.length; i++)

is n

step count for body of for loop is
2(1+2+3+ +n 1) + 3(n 1)2(1+2+3+…+n-1) + 3(n-1)
= (n-1)n + 3(n-1)
= (n-1)(n+3)
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= (n-1)(n+3)

s/e frequency total steps

for (int i = 1; i < a.length; i++) 1 n n

{ // insert a[i] into a[0:i-1] 0 n-1 0{ // insert a[i] into a[0:i 1]
int t = a[i]; 1 n-1 n-1

int j; 0 n-1 0int j;
for (j = i - 1; j >= 0 && t < a[j];j--)       1 (n-1)(n+2)/2

a[j + 1] = a[j]; 1 n(n-1)/2a[j + 1] = a[j]; 1 n(n 1)/2

a[j + 1] = t; 1 n-1 n-1

} 0 n 1 0} 0 n-1 0

Total：n^2+3n-3
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Total n 2 3n 3



In Class Exercise:
Determine the s/e, frequency counts, and total steps
for all statements in the following program segment

for(i=1;i<=n;i++)
for(j=1;j<=i;j++)for(j 1;j< i;j++)

for(k=1;k<=j;k++)
x++;x++;
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Asymptotic Complexity of y p p y
Insertion Sort

 (n-1)(n+3)O(n2)
 What does this mean? What does this mean?
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Big-Oh Notation
 Gi f i d 10,000

3n

 Given functions f(n) and 
g(n), we say that f(n) is 
O(g(n)) if there are 

1,000 2n+10

n

(g( ))
positive constants
c and n0 such that

100f(n) ≤ cg(n)  for n ≥ n0

 Example: 2n + 10 is O(n)
 2 + 10 ≤

1

10 2n + 10 ≤ cn
 (c − 2) n ≥ 10
 n ≥ 10/(c − 2) 1

1 10 100 1,000
n

n ≥ 10/(c 2)
 Pick c = 3 and n0 = 10

19

Big-Oh Example
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Big-Oh and Growth Rate

 The big-Oh notation gives an upper bound on the 
growth rate of a function

 Th “ i ” h h h The statement “f(n) is O(g(n))” means that the growth 
rate of f(n) is no more than the growth rate of g(n)

 We can use the big-Oh notation to rank functions We can use the big Oh notation to rank functions 
according to their growth rate

f( ) i O( ( )) ( ) i O(f( ))f(n) is O(g(n)) g(n) is O(f(n))

g(n) grows more Yes No

f(n) grows more No Yes

Same growth Yes Yes
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Complexity of Insertion SortComplexity of Insertion Sort

 Time or number of operations does 
not exceed c.n2 on any input of sizenot exceed c.n on any input of size 
n (n suitably large).

 Act all the o st case time is Θ(n2) Actually, the worst-case time is Θ(n2) 
and the best-case is Θ(n)

 So, the worst-case time is expected 
to quadruple each time n is doubledq p

The definition of Θ (n) will be discussed finallyThe definition of Θ (n) will be discussed finally. 

Complexity of Insertion SortComplexity of Insertion Sort

 Is O(n2) too much time?
 Is the algorithm practical? Is the algorithm practical?

Practical Complexities
109 instructions/second

n n nlogn n2 n3n n nlogn n  n  

1000 1mic 10mic 1milli 1sec 

10000 10mic 130mic 100milli 17min10000 10mic 130mic 100milli 17min 

106 1 illi 20 illi 17 i 32106 1milli 20milli 17min 32years 
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Impractical Complexities

n n4 n10 2n
109 instructions/second
n n  n  2  

1000 17min 3.2 x 1013 3.2 x 10283 
years years 

10000 116 ??? ???10000 
 
 

116 
days 

  ??? ??? 

106 3 x 107 ?????? ??????106 3 x 107 
years 

?????? ??????
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Faster Computer v s Better algorithmFaster Computer v.s Better algorithm

Algorithmic improvement more usefulAlgorithmic improvement more useful
than hardware improvement.

E g 2n to n3E.g. 2 to n

Relatives of Big OhRelatives of Big-Oh

 bi O big-Omega
 f(n) is Ω(g(n)) if there is a constant c > 0 

and an integer constant n0 ≥ 1 such that g 0

f(n) ≥ c•g(n) for n ≥ n0

 big-Theta
 f(n) is Θ(g(n)) if there are constants c’ > 0 and c’’ > 0 f(n) is Θ(g(n)) if there are constants c > 0 and c > 0 

and an integer constant n0 ≥ 1 such that c’•g(n) ≤ f(n) ≤
c’’•g(n) for n ≥ n0

 little oh little-oh
 f(n) is o(g(n)) if, for any constant c > 0, there is an 

integer constant n0 ≥ 0 such that f(n) ≤ c•g(n) for n ≥ n0

 little-omega
 f(n) is ω(g(n)) if, for any constant c > 0, there is an 

integer constant n0 ≥ 0 such that f(n) ≥ c•g(n) for n ≥ n0
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Intuition for AsymptoticIntuition for Asymptotic 
Notation

 Big-Oh
 f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

 big-Omega
 f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)f(n) is Ω(g(n)) if f(n) is asymptotically greater than or equal to g(n)

 big-Theta
 f(n) is Θ(g(n)) if f(n) is asymptotically equal to g(n)( ) (g( )) ( ) y p y q g( )

 little-oh
 f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n) f(n) is o(g(n)) if f(n) is asymptotically strictly less than g(n)

 little-omega
 f(n) is ω(g(n)) if f(n) is asymptotically strictly greater than g(n)
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Homework
Determine the frequency counts for all statements and 
analysis the complexity for the program segment

for(int i=0;i<n;i++)
{ // n is number of elements stored in array{ // y
for (int j=0;j<n-i-1;j++)

{{
if(array[j]>array[j+1])
Swap(array[j],array[j+1]);Swap(array[j],array[j 1]);

}
}}
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