
Single-Source All-Destinations 
Shortest Paths With General Weights

• Directed weighted graph.
• Edges may have negative cost.
• No cycle whose cost is < 0.
• Find a shortest path from a given source vertex

s to each of the n vertices of the digraph.

Single-Source All-Destinations 
Shortest Paths With General Weights

• Dijkstra’s O(n2) single-source greedy algorithm 
doesn’t work when there are negative-cost 
edges.

Bellman-Ford Algorithm

• Single-source all-destinations shortest paths in 
digraphs with negative-cost edges.

• Uses dynamic programming.
• Runs in O(n3) time when adjacency matrices 

are used.
• Runs in O(ne) time when adjacency lists are 

used.

Strategy

• To construct a shortest path from the source to 
vertex v, decide on the max number of edges on the 
path and on the vertex that comes just before v.

• Since the digraph has no cycle whose length is < 0, 
we may limit ourselves to the discovery of cycle-
free (acyclic) shortest paths.

• A path that has no cycle has at most n-1 edges.

s w v



Cost Function d

• Let d(v,k) (distk[v]) be the length of a shortest path 
from the source vertex to vertex v under the
constraint that the path has at most k edges.

• d(v,n-1) is the length of a shortest unconstrained 
path from the source vertex to vertex v.

• We want to determine d(v,n-1) for every vertex v.

s w v

Value Of d(*,0)

• d(v,0) is the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at most 0 edges.

s

• d(s,0) = 0.
• d(v,0) = infinity for v != s.

Recurrence For d(*,k), k > 0

• d(v,k) is the length of a shortest path from the 
source vertex to vertex v under the constraint that 
the path has at most k edges.

• If this constrained shortest path goes through no 
more than k-1 edges, then d(v,k) = d(v,k-1).

Recurrence For d(*,k), k > 0

• If this constrained shortest path goes through k
edges, then let w be the vertex just before v on this 
shortest path (note that w may be s).

s w v

• We see that the path from the source to w must be 
a shortest path from the source vertex to vertex w 
under the constraint that this path has at most k-1 
edges.

• d(v,k) = d(w,k-1) + length of edge (w,v).



Recurrence For d(*,k), k > 0

• We do not know what w is.
• We can assert

d(v,k) = min{d(w,k-1) + length of edge (w,v)}, where 
the min is taken over all w such that (w,v) is an edge of 
the digraph.

• Combining the two cases considered yields:
d(v,k) = min{d(v,k-1),

min{d(w,k-1) + length of edge (w,v)}}

s w v
• d(v,k) = d(w,k-1) + length of edge (w,v).

Pseudocode To Compute d(*,*)
// initialize d(*,0)
d(s,0) = 0;
d(v,0) = infinity, v != s;
// compute d(*,k), 0 < k < n
for (int k = 1; k < n; k++)
{

d(v,k) = d(v,k-1), 1 <= v <= n;
for (each edge (u,v))

d(v,k) = min{d(v,k), d(u,k-1) + cost(u,v)}
}

Complexity
Θ(n) to initialize d(*,0).
Θ(n2) to compute d(*,k) for each k > 0 when 
adjacency matrix is used.
Θ(e) to compute d(*,k) for each k > 0 when 
adjacency lasts are used.
Overall time is Θ(n3) when adjacency matrix is 
used.
Overall time is Θ(ne) when adjacency lists are 
used.
Θ(n2) space needed for d(*,*).

p(*,*)

• Let p(v,k) be the vertex just before vertex v 
on the shortest path for d(v,k).

• p(v,0) is undefined.
• Used to construct shortest paths.



Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

Source vertex is 1.

1

Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,k) p(v.k)

1 2 3 4
0
1
2
3

5 6 v
k0 - - - - - - - - - - -

0 -3 1- -7 1- -- -

4

0 -3 17 27 116 48 4
0 -2 67 27 110 38 4
0 -2 66 27 110 38 4

Example

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,k) p(v.k)

1 2 3 4
4
5

5 6 v
k0 -2 66 27 110 38 4

0 -2 66 27 19 38 4

Shortest Path From 1 To 5

1 2

4

3

6

5

3

7

-6

3

4 6
5

1

9

1

d(v,5) p(v,5)

1 2 3 4
5

5 6
- 6 2 1 3 40 2 6 7 9 8
1 2 3 4 5 6



Observations
• d(v,k) = min{d(v,k-1),

min{d(w,k-1) + length of edge (w,v)}}
• d(s,k) = 0 for all k.
• If d(v,k) = d(v,k-1) for all v, then d(v,j) = d(v,k-1), 

for all j >= k-1 and all v.
• If we stop computing as soon as we have a d(*,k)

that is identical to d(*,k-1) the run time becomes
O(n3) when adjacency matrix is used. (O(kn2), k<=n)
O(ne) when adjacency lists are used. (O(ke), k<=n)

Observations

• The computation may be done in-place.
d(v) = min{d(v), min{d(w) + length of edge (w,v)}}
instead of
d(v,k) = min{d(v,k-1),

min{d(w,k-1) + length of edge (w,v)}}
• Following iteration k, d(v,k+1) <= d(v) <= d(v,k)
• On termination d(v) = d(v,n-1).
• Space requirement becomes O(n) for d(*) and 

p(*).

Homework

• Exercise 2 @P373


