- Single-Source All-Destinations Shortest Paths With General Weights
- Directed weighted graph.
- Edges may have negative cost.
- No cycle whose cost is <0.
- Find a shortest path from a given source vertex s to each of the n vertices of the digraph.

Single-Source All-Destinations

 Shortest Paths With General Weights- Dijkstra's $O\left(n^{2}\right)$ single-source greedy algorithm doesn't work when there are negative-cost edges.

Bellman-Ford Algorithm

- Single-source all-destinations shortest paths in digraphs with negative-cost edges.
- Uses dynamic programming.
- Runs in $\mathrm{O}\left(\mathrm{n}^{3}\right)$ time when adjacency matrices are used.
- Runs in O(ne) time when adjacency lists are used.

Strategy

- To construct a shortest path from the source to vertex v , decide on the max number of edges on the path and on the vertex that comes just before v.
- Since the digraph has no cycle whose length is <0, we may limit ourselves to the discovery of cyclefree (acyclic) shortest paths.
- A path that has no cycle has at most n-1 edges.

Cost Function d

- Let $\mathrm{d}(\mathrm{v}, \mathrm{k})\left(\right.$ dist $\left.^{\mathrm{k}}[\mathrm{v}]\right)$ be the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most k edges.
- $d(v, n-1)$ is the length of a shortest unconstrained path from the source vertex to vertex v.
- We want to determine $\mathrm{d}(\mathrm{v}, \mathrm{n}-1)$ for every vertex v .

Recurrence For $\mathrm{d}\left({ }^{*}, \mathrm{k}\right), \mathrm{k}>0$

- $\mathrm{d}(\mathrm{v}, \mathrm{k})$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most k edges.
- If this constrained shortest path goes through no more than $\mathrm{k}-1$ edges, then $\mathrm{d}(\mathrm{v}, \mathrm{k})=\mathrm{d}(\mathrm{v}, \mathrm{k}-1)$.

Value Of d(*,0)

- $d(v, 0)$ is the length of a shortest path from the source vertex to vertex v under the constraint that the path has at most 0 edges.
- $\mathrm{d}(\mathrm{s}, 0)=0$.
- $d(\mathrm{v}, 0)=$ infinity for $\mathrm{v}!=\mathrm{s}$.

Recurrence For d(*,k), k > 0

- If this constrained shortest path goes through k edges, then let w be the vertex just before v on this shortest path (note that w may be s).

- We see that the path from the source to w must be a shortest path from the source vertex to vertex w under the constraint that this path has at most k-1 edges.
- $\mathrm{d}(\mathrm{v}, \mathrm{k})=\mathrm{d}(\mathrm{w}, \mathrm{k}-1)+$ length of edge (w, v).

Recurrence For d(*,k), k > 0

- $\mathrm{d}(\mathrm{v}, \mathrm{k})=\mathrm{d}(\mathrm{w}, \mathrm{k}-1)+$ length of edge (w, v).

- We do not know what w is.
- We can assert
- $\mathrm{d}(\mathrm{v}, \mathrm{k})=\min \{\mathrm{d}(\mathrm{w}, \mathrm{k}-1)+$ length of edge $(\mathrm{w}, \mathrm{v})\}$, where the min is taken over all w such that (w, v) is an edge of the digraph.
- Combining the two cases considered yields:
- $\mathrm{d}(\mathrm{v}, \mathrm{k})=\min \{\mathrm{d}(\mathrm{v}, \mathrm{k}-1)$,
$\min \{\mathrm{d}(\mathrm{w}, \mathrm{k}-1)+$ length of edge $(\mathrm{w}, \mathrm{v})\}\}$

Pseudocode To Compute d(*,*)

```
// initialize d(*,0)
d(s,0) = 0;
d(v,0) = infinity, v != s;
// compute d(*,k), 0<k<n
for (int k = 1; k < n; k++)
{
    d(v,k) = d(v,k-1), 1 <= v <= n;
    for (each edge (u,v))
        d(v,k)=\operatorname{min}{d(v,k),d(u,k-1)+\operatorname{cost}(u,v)}
}
```


Complexity

- $\Theta(\mathrm{n})$ to initialize $\mathrm{d}\left({ }^{*}, 0\right)$.
- $\Theta\left(\mathrm{n}^{2}\right)$ to compute $\mathrm{d}\left({ }^{*}, \mathrm{k}\right)$ for each $\mathrm{k}>0$ when adjacency matrix is used.
- $\Theta(\mathrm{e})$ to compute $\mathrm{d}\left({ }^{*}, \mathrm{k}\right)$ for each $\mathrm{k}>0$ when adjacency lasts are used.
- Overall time is $\Theta\left(\mathrm{n}^{3}\right)$ when adjacency matrix is used.
- Overall time is Θ (ne) when adjacency lists are used.
- $\Theta\left(n^{2}\right)$ space needed for $d\left({ }^{*}, *\right)$.

$$
p\left({ }^{*}, *\right)
$$

- Let $\mathrm{p}(\mathrm{v}, \mathrm{k})$ be the vertex just before vertex v on the shortest path for $\mathrm{d}(\mathrm{v}, \mathrm{k})$.
- $\mathrm{p}(\mathrm{v}, 0)$ is undefined.
- Used to construct shortest paths.

Source vertex is 1 .

d(v,k)
p(v.k)

Shortest Path From 1 To 5

$$
\begin{aligned}
& \text { d(v,5) }
\end{aligned}
$$

Observations

- $\mathrm{d}(\mathrm{v}, \mathrm{k})=\min \{\mathrm{d}(\mathrm{v}, \mathrm{k}-1)$, $\min \{\mathrm{d}(\mathrm{w}, \mathrm{k}-1)+$ length of edge $(\mathrm{w}, \mathrm{v})\}\}$
- $\mathrm{d}(\mathrm{s}, \mathrm{k})=0$ for all k .
- If $\mathrm{d}(\mathrm{v}, \mathrm{k})=\mathrm{d}(\mathrm{v}, \mathrm{k}-1)$ for all v , then $\mathrm{d}(\mathrm{v}, \mathrm{j})=\mathrm{d}(\mathrm{v}, \mathrm{k}-1)$, for all $\mathrm{j}>=\mathrm{k}-1$ and all v .
- If we stop computing as soon as we have a $\mathrm{d}\left({ }^{*}, \mathrm{k}\right)$ that is identical to $\mathrm{d}\left({ }^{*}, \mathrm{k}-1\right)$ the run time becomes
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$ when adjacency matrix is used. ($\mathrm{O}\left(\mathrm{kn}^{2}\right), \mathrm{k}<=\mathrm{n}$)
- $\mathrm{O}(\mathrm{ne})$ when adjacency lists are used. ($\mathrm{O}(\mathrm{ke})$, $\mathrm{k}<=\mathrm{n}$)

Observations

- The computation may be done in-place.
$\mathrm{d}(\mathrm{v})=\min \{\mathrm{d}(\mathrm{v}), \min \{\mathrm{d}(\mathrm{w})+$ length of edge $(\mathrm{w}, \mathrm{v})\}\}$ instead of

$$
\mathrm{d}(\mathrm{v}, \mathrm{k})=\min \{\mathrm{d}(\mathrm{v}, \mathrm{k}-1),
$$

```
min{d(w,k-1) + length of edge (w,v)}}
```

- Following iteration $\mathrm{k}, \mathrm{d}(\mathrm{v}, \mathrm{k}+1)<=\mathrm{d}(\mathrm{v})<=\mathrm{d}(\mathrm{v}, \mathrm{k})$
- On termination $\mathrm{d}(\mathrm{v})=\mathrm{d}(\mathrm{v}, \mathrm{n}-1)$.
- Space requirement becomes $\mathrm{O}(\mathrm{n})$ for $\mathrm{d}\left({ }^{*}\right)$ and $p(*)$.

Homework

- Exercise 2 @P373

