Shortest Path Problems

- Directed weighted graph.
- Path length is sum of weights of edges on path.
- The vertex at which the path begins is the source vertex.
- The vertex at which the path ends is the destination vertex.

Example

A path from 1 to 7 . Path length is 14.

Example

Another path from 1 to 7.
Path length is 11.

Three Types of Shortest Path Problems

- Single source single destination.
- Single source all destinations.
- All pairs (every vertex is a source and destination).

Single Source Single Destination

A wrong algorithm:

- Leave source vertex using cheapest/shortest edge.
- Leave visited vertex using cheapest edge subject to the constraint that a new vertex is reached.
- Continue until destination is reached.

Constructed 1 To 7 Path

Path length is 12 .
Not shortest path. Algorithm doesn't work!

Single Source All Destinations

Need to generate up to n (n is number of vertices) paths (including path from source to itself).
Dijkstra's method:

- Construct these up to n paths in order of increasing length.
- Assume edge costs (lengths) are >= 0 .
- So, no path has length <0.
- First shortest path is from the source vertex to itself. The length of this path is 0 .

Single Source All Destinations

Single Source All Destinations

Single Source All Destinations

- Let $\mathrm{d}[\mathrm{i}]$ be the length of a shortest one edge extension of an already generated shortest path, the one edge extension ends at vertex i.
- The next shortest path is to an as yet unreached vertex for which the d[] value is least.
- Let $\mathrm{p}[\mathrm{i}]$ be the vertex just before vertex i on the shortest one edge extension to i.

Single Source All Destinations

Single Source All Destinations

Single Source All Destinations

Single Source All Destinations

Single Source All Destinations

Single Source All Destinations

Length
0

Source Single Destination

Terminate single source all destinations algorithm as soon as shortest path to desired vertex has been generated.

In Class Exercise

- Find the shortest path from vertex 3 to vertex 4.

Data Structures For Dijkstra’s Algorithm

- The described single source all destinations algorithm is known as Dijkstra's algorithm.
- Implement d[] and p[] as 1D arrays.
- Keep a linear list L of reachable vertices to which shortest path is yet to be generated.
- Select and remove vertex v in L that has smallest d[] value.
- Update d[] and p[] values of vertices adjacent to v.

Complexity

Complexity

- $O(n)$ to select next destination vertex.
- O(out-degree) to update d[] and p[] values when adjacency lists are used.
- $\mathrm{O}(\mathrm{n})$ to update d[] and p[] values when adjacency matrix is used.
- Selection and update done once for each vertex to which a shortest path is found.
- Total time is $\mathrm{O}\left(\mathrm{n}^{2}+\mathrm{e}\right)=\mathrm{O}\left(\mathrm{n}^{2}\right)$.
- When a min heap of d[] values is used in place of the linear list L of reachable vertices, total time is $\mathrm{O}((\mathrm{n}+\mathrm{e}) \log \mathrm{n})$, because $O(n)$ remove min operations and $\mathrm{O}(\mathrm{e})$ change key (d[] value) operations are done.
- When e is $O\left(n^{2}\right)$, using a min heap is worse than using a linear list.

